已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5,求cos(θ/2+π/8)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:28:12
xŒJ@_'a7,. TH"1i{hԋz5WA!iS_٨G;3S>..7qRaЉ]ݱj`@8bI(I0Ɣl.=+#>i1ĵn4`eR$U,é MR
j#*PhF"'M"A9CxNIS5mu*qh!|Y7HwHP~s>/S2h}s&(wW,n ӳ7,^}v=.GE5bUt<.gdofӅ]
已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5,求cos(θ/2+π/8)
已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5,求cos(θ/2+π/8)
已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5,求cos(θ/2+π/8)
cos(θ/2+π/8)=-4/5
m+n=(cosθ+√2-sinθ,sinθ+cosθ)
丨m+n丨=√[(cosθ+√2-sinθ)^2+(sinθ+cosθ)^2]
=√[4+2√2cosθ-2√2sinθ]
=√[4+4(cosπ/4cosθ-sinπ/4sinθ)]
=√[4+4cos(θ+π/4)]
=√{4+4[2cos(θ/2+π/8)cos(θ/2+π/8)-1]}
=2√2│cos(θ/2+π/8)│
=8√2/5
│cos(θ/2+π/8)│=4/5
θ∈(π,2π),θ/2+π/8∈(5π/8,9π/8)
cos(θ/2+π/8)=-4/5
-4/5
求解过程有点麻烦啊,能在线聊么?