数列{an}满足a1=1,a(n+1)=an/(an+1),令bn=1/an,证明{bn}为等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:29:50
x){6uӎՉyv/|msNFmbF"d<[C<Nʫ}cOaTOMl>t`G[Z!2aA
BO6N9;)9fǰ 3gM+^,_yX鲦gs:yng=Ow$فB +
数列{an}满足a1=1,a(n+1)=an/(an+1),令bn=1/an,证明{bn}为等差数列
数列{an}满足a1=1,a(n+1)=an/(an+1),令bn=1/an,证明{bn}为等差数列
数列{an}满足a1=1,a(n+1)=an/(an+1),令bn=1/an,证明{bn}为等差数列
a(n+1)=an/(an+1)
∴1/a(n+1)=(an+1)/an=1+1/an
∵bn=1/an
∴b(n+1)=1+bn
∴﹛bn﹜是等差数列
stupid为您解惑,
如有不满请指出,
已知数列{an}满足a(n+1)=an+n,a1=1,则an=
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列{an}满足a(n+1)=an+lg2,a1=1,求an
数列[An]满足a1=2,a(n+1)=3an-2 求an
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
数列{an}满足a1=2,a(n+1)=-1/(an+1),则a2010等于
数列{an}满足a1=3,a n+1=2an,则a4等于
已知数列{an}满足a1=1,3a(n+1)+an-7
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列{an}满足a1=1,an=a(n-1)+1/(n2-n),求数列的通项公式
已知数列an满足:a1=1,an-a(n-1)=n n大于等于2 求an
已知数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值
已知数列{an}满足a1=33,a(n+1)-an=2n,求an/n的最小值
已知数列an满足a1=100,a(n+1)-an=2n,则(an)/n的最小值为
已知数列an满足a1=2,an=a(n-1)+2n,(n≥2),求an
数列{an}满足a1=1 an+1=2n+1an/an+2n