1.假设某星球的质量约为地球质量的9倍,半径约为地球的一半.若地球上近地卫星的周期为84min,则该星球上的近地卫星的周期是多少?2.两艘轮船质量分别是5.0×10的7次方 kg和1.0×10的8次方kg,相距1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:24:59
1.假设某星球的质量约为地球质量的9倍,半径约为地球的一半.若地球上近地卫星的周期为84min,则该星球上的近地卫星的周期是多少?2.两艘轮船质量分别是5.0×10的7次方 kg和1.0×10的8次方kg,相距1
xVOoQ*֬EKIz'<n$ziLid)PhmZkEl~.~g-ezbv̼kOrFL۫h;{z%3Qg+W2f AAi2n;ZT%z(JU֍MΌ\fGk9w^&Eg3,m:7okȧ@FM&q[P;<^2+Ur@ kCnrp[nKKb5ڽ][ b׫%.J RLbl\2pVխx ZNY2x}c$$e!Qx/bY "dˎ@B$H)#<ϢqmSErb_&N! 9~.{\ qd|O=udA~W;v'*N5g3Svq1q,LC"ʚ+EmZi\gAy;:{t/2#Uo˜2@hS76M4yЛ3P@S:D]

1.假设某星球的质量约为地球质量的9倍,半径约为地球的一半.若地球上近地卫星的周期为84min,则该星球上的近地卫星的周期是多少?2.两艘轮船质量分别是5.0×10的7次方 kg和1.0×10的8次方kg,相距1
1.假设某星球的质量约为地球质量的9倍,半径约为地球的一半.若地球上近地卫星的周期为84min,则该星球上的近地卫星的周期是多少?
2.两艘轮船质量分别是5.0×10的7次方 kg和1.0×10的8次方kg,相距10km.求它们之间的万有引力.将这个力与它们所受的重力进行的比较,看看相差多少倍?

1.假设某星球的质量约为地球质量的9倍,半径约为地球的一半.若地球上近地卫星的周期为84min,则该星球上的近地卫星的周期是多少?2.两艘轮船质量分别是5.0×10的7次方 kg和1.0×10的8次方kg,相距1
(1)地球上近地卫星周期为T₁,某行星上为T₂
因为是近地卫星,轨道半径看成行星半径
T=2π√(R³/GM)
故T₁/T₂=√[(R³m)/(r³M)]
其中R为地球半径,r为某行星半径,M为地球质量,m为某行星质量
又R/r=2 m/M=9
故T₁/T₂=√72=6√2
T₂=T₁/(6√2)=7√2min≈9.9min
(2) 套万有引力公式算
万有引力F=GMm/R方

1)由GMm/R^2=m(2π/T)^2R 得:

T=2π√(R^3/GM)

则T/T地=√[(R/R地)^3*(M地/M)]

T=T地*√[(1/2R地/R地)^3*(M地/9M地)]=T地*√1/72=T地*√2/12≈9.90min...

全部展开

1)由GMm/R^2=m(2π/T)^2R 得:

T=2π√(R^3/GM)

则T/T地=√[(R/R地)^3*(M地/M)]

T=T地*√[(1/2R地/R地)^3*(M地/9M地)]=T地*√1/72=T地*√2/12≈9.90min

2)F=GMm/R^2=(6.67 x 10^-11 x 5 x 10^7 x 1 x 10^8)/(10 x 10^3)^2=3.335 x 10^-3 N

F/G1=3.335 x 10^-3 /(5 x 10^7 x 10)=6.67 x 10^-12

F/G2=3.335 x 10^-3 /(1 x 10^8 x 10)=3.335 x 10^-12
所以万有引力大小为3.335 x 10^-3 N,分别是两船重力的6.67 x 10^-12和3.335 x 10^-12倍。

收起

1.利用地球和近地卫星列出万有引力方程式(与T有关的),同样的,利用某星球及其近地卫星
列万有引力式,由这两个式子就可以求出
2.直接利用万有引力公式算出万有引力,然后与重力比较即可