1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.2.在三角形ABC中,a=4,b=1,c=4,AD是角BAC的平分线,求AD的长.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:47:44
1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.2.在三角形ABC中,a=4,b=1,c=4,AD是角BAC的平分线,求AD的长.
xSNA~v- A% L zH|x̴ٖkWĤ霟o9;g+ UN+qq@OcK}x\ۢ3gd0]d%q+ݭn^ /;IulhC`Sm>Um $*60r\"j Wꏩ*V❅j]CC&j5Uz<~08TE&iEV,jw~(Ft- HWIO XYN"<uSws2}SŊP=}SW` fT}9ɺSYk{gi6_?r7$$9OrL'楧\mkC!%ufQPFmWvX#bBwDT a> q`kE3B:x/E 6c><h&4

1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.2.在三角形ABC中,a=4,b=1,c=4,AD是角BAC的平分线,求AD的长.
1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.
2.在三角形ABC中,a=4,b=1,c=4,AD是角BAC的平分线,求AD的长.

1.三角形ABC中,已知tanA=3/5,tanB=1/4,且最长边为1,求角C及三角形ABC中最短边的长.2.在三角形ABC中,a=4,b=1,c=4,AD是角BAC的平分线,求AD的长.
1.
A=arctan(3/5) B=arctan(1/4)
C=π-A-B=π-arctan(3/5)-archtan(1/4)=135°
三角形内角正弦之比=他们的对边边长之比.
3/5>1/4 所以tanA>tanB,由tan函数在(0,π/2)的单调性可知 A>B
所以sinA>sinB,最短边是b,最长边是c,c=1
c/sinC = b/sinB
b=c*sinB/sinC = 0.343
2.a b c 分别是A B C的对边吗?
设角BAC=θ
a/sinA = b/sinB = c/sinC
所以 4/sinθ=1/sin(π-2θ)
sinθ=4sin(π-2θ)
sinθ=4sin(2θ)=8sinθcosθ
所以sinθ=0 或cosθ=1/8
所以θ=0(舍去)或θ=82.82°
角BAD=角DAC=θ/2
角ADC=180-(角DAC+角ACD)=180-3θ/2
b/sin∠ADC = AD/sinC
AD=b*sinθ/sin(180-3θ/2)
AD=1*sinθ/sin(3θ/2) = 1.2

1。tan(-C)=tan(A+B)=(tanA+tanB)/(1-tanAtanB)=1
所以C=135度
锐角A大于B,AC/AB=sinB/sinC,得最短边AC=二分之根号二
2。由AB/BD=AC/CD得CD=0.8
又由余弦定理得cosC=1/8
再由余弦定理得AD=6/5