1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>a对于一切大于1的自然数n都成立,求a的范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:50:07
x)36TV FPXA[OP(.Ov=@Y-/W=olꆼ{uLx[ƦDTO[lie~ Dzz1~qAbu6`.`ٜ6y6c=!lW ;izڻiz$w ʕ
1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>a对于一切大于1的自然数n都成立,求a的范围
1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>a对于一切大于1的自然数n都成立,求a的范围
1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>a对于一切大于1的自然数n都成立,求a的范围
1/n+1 + 1/n+2 + 1/n+3 +.+1/2n>=1/2n+1/2n+...+1/2n=1/2
1/n+1 + 1/n+2 + 1/n+3 +....+1/2n他的最小值是1/n+1 + 1/n+2 + 1/n+3 +....+1/2n>=1/2n+1/2n+...+1/2n=1/2
只要a<1/2 即可
2^n/n*(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
(n+2)!/(n+1)!
n^(n+1/n)/(n+1/n)^n
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
(n+1)^n-(n-1)^n=?
化简:(n+1)!/n!-n!/(n-1)!
(n-1)*n!+(n-1)!*n
推导 n*n!=(n+1)!-n!
化简(n+1)(n+2)(n+3)
n*【n+1】*【n+2】化简成什么?
2n/(n+1)n!
n(n+1)(n+2)等于多少?
n+(n-1)÷2×n 求化简