已知函数f(x)=a^x+a^-x(a>0,a≠1),且f(-1)=3,则f(0)+f(1)+f(2)的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:54:17
已知函数f(x)=a^x+a^-x(a>0,a≠1),且f(-1)=3,则f(0)+f(1)+f(2)的值为
xN@_mSf{ &> zpZE 0/0`Ø⭯lwcBˤ3;mXz4QWy-vZpDTqwg ĕ]x@x!v*zRL?_£3m8TX^EuF3~RNS&Zgx U TfTuG*q`Qg VnJ_T{?><|[s\37h6ƥLzng7=Pma1p0 h*8(_dEAۂy>|- z'/[0" n9%{1?crӿ? gd~6!

已知函数f(x)=a^x+a^-x(a>0,a≠1),且f(-1)=3,则f(0)+f(1)+f(2)的值为
已知函数f(x)=a^x+a^-x(a>0,a≠1),且f(-1)=3,则f(0)+f(1)+f(2)的值为

已知函数f(x)=a^x+a^-x(a>0,a≠1),且f(-1)=3,则f(0)+f(1)+f(2)的值为
f(-1)=a^-1+a=3
平方
a^-2+2+a^2=9
所以f(2)=a^2+a^-2=7
f(0)=1+1=2
f(1)=a+a^-1=3
所以原式=12

12
f(0),f(1)带入条件显然分别为2,3
f(-1)的平方=f(2)+2=9
所以f(2)=7
一加即可

f(0)=1
f(1)=f(-1)=3
f(2)=a^2+a^-2=(a+a^-1)^2-2=3^2-2=7
1+3+7=11

f(-1)=a^(-1)+a^1=3
故a+1/a=3
两边平方可知:a^2+1/a^2+2=9,即a^2+1/a^2=7
所以f(0)=2
f(1)=f(-1)=3
f(2)=a^2+1/a^2=7
于是f(0)+f(1)+f(2)=2+3+7=12