∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分求∫∫√(x^2+y^2)dxdy.请给出步骤和结果

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:44:49
∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分求∫∫√(x^2+y^2)dxdy.请给出步骤和结果
xRJ@~9&5&IzxDs֪QVѢhk-Fd7iOM 23|̬Np9UUszhXv:VAES%=s*]z.fX~t_K,Fާ+]\ӭuvk!8F B:!~r1MxU`?^ɇd"7-f2Y};33 v Ec!0<t td.9NX]%D5 YtCAXh`-5ŝBlGX>$8) J;$|#_zZ$VuNǾAA}78EE>[ĮEy i)ϖ9=$

∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分求∫∫√(x^2+y^2)dxdy.请给出步骤和结果
∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分
求∫∫√(x^2+y^2)dxdy.请给出步骤和结果

∫∫√(x^2+y^2)dxdy 其中D是由圆x^2+y^2=a^2及x^2+y^2=ax所围成区域在第一象限的部分求∫∫√(x^2+y^2)dxdy.请给出步骤和结果
x^2+y^2=ax =>(x-a/2)^2 + y^2 = (a/2)^2
是在x^2+y^2=a^2的内部
设x = r cost ,y = rsint代入x^2+y^2 = a^2得r=a
代入x^2+y^2=ax得 r^2 = arcost 所以r=acost
所以r的积分限为(acost,a)
∫∫√(x^2+y^2)dxdy
= ∫∫r^2drdt = ∫ 1/3a^3 - 1/3a^3cos^3t dt = 1/3a^3 * 1/6 (3π-4) = (3π-4)a^3 / 18

∫(D)∫ln(1+x^2+y^2)dxdy D:x^2+y^2=1与 两坐标所围成的位于第一象限内的闭区ρ=1,θ从0,到π/2 dS=ρdθdρ∫(D)∫ln(1+x^2