设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:31:13
设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx
x){n_qFmtj\~f\ENrFXLIg3(ΨxQ [2@2T`-P&H̽@C5Q=]C(4 lA}}8!hDm$ف鞅

设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx
设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx

设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx
(shX) '=[e^x-(1/e)^x·(-x) ']/2=[e^x+(1/e)^x]/2=chX
(chX) '=[e^x+(1/e)^x·(-x) ']/2=[e^x-(1/e)^x]/2=shX
证毕