如图,正方体ABCD-A1B1C1D1中,E是AA1中点 求证:平面C1BD⊥平面BDE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:02:08
如图,正方体ABCD-A1B1C1D1中,E是AA1中点 求证:平面C1BD⊥平面BDE
xn@_% *L챓 q%_@i 1u6RE#MpVE"%}[W}vPM݌9s;3Uw1 {*|~m(@F Eq/Ddqv&O}TlDPׁ:+yRy#y୙Rlwh(h66qlOe4'N О*@5fk<PaH0fص2VŰ-ZV(s1Yi.b_IKj3-P`A-e,eCY]Q v9.;hRah9:H|Es<"YOa/# P.E{~Ipd7lY;;]8@2KmZ#dGTu Is =rK߼x-2"$ҕGT:":@**{~dFN&{S:|H

如图,正方体ABCD-A1B1C1D1中,E是AA1中点 求证:平面C1BD⊥平面BDE
如图,正方体ABCD-A1B1C1D1中,E是AA1中点 求证:平面C1BD⊥平面BDE

如图,正方体ABCD-A1B1C1D1中,E是AA1中点 求证:平面C1BD⊥平面BDE
设正方体边长为2,取BD中点为F,连接EF、C1F、C1E.
在Rt△EAF中,可知AE=1,AF=根号2,则得到EF=根号3;
在Rt△CC1F中,可知CC1=2,CF=根号2,则得到C1F=根号6;
在Rt△A1C1E中,可知A1E=1,A1C1=2根号2,则得到C1E=3;
因为EF²+C1F²=C1E²,所以△C1EF为Rt△,角EFC1为直角
因此EF⊥FC1.
又因为等腰△EBD中,EF⊥BD
所以EF⊥平面C1BD
由于EF在平面BDE上,
可得平面BDE⊥平面C1BD