分类讨论设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a) (1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:39:31
分类讨论设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a) (1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1
xV]SV+y>5?igԇQgxT &M >cJblagʲd34NH{sv^ONr)8a膍KK4Si}owT\`*~4`Υ)]`mƯ;=PNeL1[@LlMe<҆oXV럄89 .m;8cd p\Gd/d>u,E_O tZN2Pd8+_Va|lrbۼ.qfloc+9sV}z1b~`y< wm vlVSSCĹe7/welm:gXU(PqK12Z`8x:|o챈D_G!=֨BEE`7rN%%':'^|Fi֐ˎޒZT5ٞGH=hs$nNFlA-'GF4.붋yl %iXԧ&SwtQ] lodwZ5"ؐ: 摪,l|Ԕnrp;).mo?zV>_Na㞾7NR?} t:jlcnY*`u_8 Ւ'h n4y4Y7lyN71iÊǐ#= oN#.v1̈́e3ؓm78X,JV4!cpAd9|6s}f(/dg!xIzn|\wft做:3jH$(jTr9Cxy^jĝcp(ta:?&;P7W, пG;`az$"v'RSȤ{wp s}--C/ʞTw- D#F߳؂2<'I 6.

分类讨论设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a) (1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1
分类讨论
设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a)
(1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);
(2).求g(a)
(3)试求满足g(a)=g(1/a)的所有实数a.

分类讨论设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a) (1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1
t=√(1+x)+√(1-x)
t²=1+x+1-x+2√[(1+x)(1-x)]=2+2√[(1+x)(1-x)]
显然t²的范围是(2,4),t的范围就是[√2,2]
所以:√(1-x²)=√[(1+x)(1-x)]=(t²-2)/2(因为此处定义域是符合要求的,所以可以拆分)
f(x)=m(t)=a(t²-2)/2+t (√2≤t≤2)
2:
当a=0时,f(x)=t,而t的最大值为2,这时f(x)的最大值就是g(a)=2
当a<0时,f(x)的最大值其实就是m(t)的最大值,
m(t)=a/2t²+t-a
这时一个二次函数,当t=-1/a时,m(t)取得最大值-1/(2a)-a.不过,这一值不是可以取的,因为t是有取值范围的,所以要想在这里取得最大值,那么a也要满足t的取值范围,即要:
√2≤-1/a≤2→-1/√2≤a≤-1/2.所以总结起来就是,当
-1/√2≤a≤-1/2时,取的最大值-1/(2a)-a
当a<-1/√2即-1/a<√2时,也就是该二次函数的对称轴在t的最小值的左边,从图像上就可以判断,此时m(t)的最大值就是当t取√2的时候,即此时
g(a)=√2
当-1/2<a<0即-1/a>2时,也就是该二次函数的对称轴在t的最大值的右边,
从图像上就可以判断,此时m(t)的最大值就是当t取2的时候,即此时
g(a)=a+2
当a>0时,二次函数m(t)开口向上,且对称轴小于0,从图像上就可以看出,此时m(t)的最大值就是当t取2时的最大值,即此时
g(a)=a+2
综合前面所有的结论:
当a≤-1/√2时,g(a)=√2;………………………………情况①
当-1/√2≤a≤-1/2时,g(a)=-1/(2a)-a…………………情况②
当a>-1/2时,g(a)=a+2……………………………………情况③
(情况③中,其实就是将当a=0时也包括进去了,因为当a=0时,符合这一函数)
3:
由2可知,当a<-1/√2,1/a>-√2,属于情况②,要想满足条件,只需让g(a)=-1/(2a)-a=√2,解得,a=-1/√2,其实也就是在这两种情况的交界处,所以a=-1/√2是符合要求的.
当-1/√2≤a≤-1/2时,-2≤1/a≤-√2,显然1/a是在情况①的范围.要想使之符合要求,只要令g(a)=√2,解出符合要求的a即可,而这已经在①中完成.
当-1/2<a<0时,1/a<-2,这是情况1的范围了.令a+2=√2→a=√2-2,这就不属于-1/2<a<0这一范围了,所以当-1/2<a<0时,不存在符合要求的a值
当a=0,显然不符合要求.
当a>0,1/a也是大于0,令
g(a)=g(1/a)→a+2=1/a+2,解出a=1(-1省略掉)
综合以上所有的情况,符合要求的实数a有:a=-1/√2,a=1.

设a为非负实数,函数f(x)= x |x-a|-a,讨论函数y=f(x)的零点个数,并求出零点. 设a为实数,讨论函数f(x)=x^2+|x-a|+1的奇偶性不要复制的. 设a为实数,函数f(x)=x平方+|x-a|,x∈R.讨论f(x)的奇偶性哥哥姐姐 我做不来 好像是要分类的 分类 讨论 设a为实数,f(x)=x平方+│x-a│+1,x∈R 讨论f(x)的奇偶性.2:求f(x)的最小值在这个题目里要用到分类讨论思想,而两个问题里分类的标准不一,我有些疑惑,参考书上给的答案是:(1.)中 根 设a为实数,函数f (x)=x²+|x-a|+1,x∈R 1.讨论此函数的奇偶性 2 f (x)的最小值 设a为实数,函数f(x)=x2+|x-a|+1,x∈R⑴讨论f(x)的奇偶性⑵求f(x)的最小值 分类讨论设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a) (1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1 设a为实数,函数f(x)=x平方+|x-a|+1,x∈R.讨论f(x)的奇偶性 “设a为实数,函数f(X)=x|x-a|,(1)但-1≤x≤1时,讨论f(X)的奇偶性” 设a为实数,函数f(x)=x平方+|x-a|+1,x∈R.讨论f(x)的奇偶性 设a为实数,函数f(x)=x|x-a|,当-1≤x≤1时,讨论f(X)的奇偶性 设a为实数,函数f(x)=x²+|x-a|+1,x∈R.讨论f(x)的奇偶性! 设a为实数,函数f(x)=x|x-a|,讨论f(x)函数的奇偶性;2)求函数f(x)在[0,1]上的最大值. 设a为实数,函数f(x)=x²+(x-a)的绝对值+1,x∈R,(1)讨论f(x)的奇偶性(2)若a=2,求f(x)最小 设a为实数,函数f(x)=x^2+|2x-a|+1(x属于R)(1)讨论f(x)的奇偶性(详细过程)(2)当a=2时,求f(x)的最小值 设a为实数,函数f(x)=x2+「x-a」+1,x∈R(1)讨论f(X)的奇偶性(2)若x 大于等于a,求f(X)的最小值 设a为实数,函数f(x)=2x^2+(x-a)|x+a|求f(x)最小值! 设a为实数,函数f(x)=x的平方+|x-a|+1,X属于R (1)讨论f(x)的奇偶性(2)求f(x)的最小值