如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 01:54:02
如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个
xU]OG+R*~q˦$śZ/8moԴ⁐PL&$D(IA16Sή_;J+ѷ5sϜ{w0}&c4/!>WTMC[%HAj._#ny[Q05Ca=Z$pe2=~}V"d Yzkw ^YnLmzm<|#oH1M@3b!.`6o5[vTp޻zJV5>jMߦ`_Hڀ PKvbL KX$calY!1$ q8E X$ ;d B[I귓I[ #ܗi2v).e` dE"`'hض8찔H8yI. 6- -N~43[xYYMB'-MpR|}D{PYOq:bŐ1\PeQk@UdjiD>(I_! )ȋ@}Ev*"٧Zcc bz3zX11nڱH5,MW Fr{ t^fEz]{<1?g:!oPԇdPPw/lQ!م-B^~f&! 2F Ɗٮ1Flk khtd|tb  -[vKsh-&dpP8O@vӈocj~X(ٙLV:329y "7ެA[͂9)y2Lv"@ BN]uxIs>IKI=z4GH,g!/rGH O1s!;ȭLoƔB:!:3(fETtkֿÔ[ZqJudx(JޫN3iuj ARgtd6fRXMg}cV[ۜ/ejݾ`O~R Jz31VyI1:6` @cA>n5?@~S

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个
如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...
P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个单位每秒速度运动,运动时间为t.求:
(1)C点坐标.
(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值.

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个
(1)作CQ垂直X轴于Q点.
由一个直角CQB、CB=AB、∠CBQ=∠BAO知:△AOB与△BQC相似.
∴BQ=AO=3. 又OB=1=CQ,∴C坐标为(OB+BQ,CQ),即(4,1).
(2)由AB//DC,知∠DMR=∠ANO.
若要△ANO与△DMR相似,则还需∠MDR=∠NAO,∠AON=∠DRM.
只需DR//AO即可.此时R的横坐标=D的横坐标.
作DE垂直Y轴于E,显然DE=BQ=3,D的横坐标为3.
因P为A、C中点,故P为(2,2),OP斜率为1.
∴R坐标为(3,3),OR长度=3乘以根号2.
t=3*根号2除以根号2=3,即t=3时,两三角形相似.
(3)因为R速度为根号2,H速度为1,且∠ROH=45°,tan∠ROH=根号2.
∴RH始终垂直于X轴.RH=OH=t.
设△HCR的高为h,并过点C垂直于RH.则h=|4-t|.
∴S△HCR=h*t/2=|-t²+4t|/2.
以A、B、C、R为顶点的梯形,有两种可能:
1.顶边和底边分别为BC、AR,此时BC//AR.
延长AD,使其与OM相交于点R.
斜率AD=tan∠BAO=1/3,∴AD方程为:y=x/3+3.
R坐标为(4.5,4.5),此时为梯形,t=4.5
2.顶边、底边分别为CR、AB,此时CR//AB,且R与M重合.
CD斜率=-3,且直线CD过点C,∴CD方程为:y-1=-3*(x-4)
OM与CD交于点M(即R),故M为(13/4,13/4).
此时四边形ABCR为梯形,t=13/4.

如图,正方形ABCD的边长为a.在AB、CD上分别取点P、S,连接PS,如图,正方形ABCD的边长为a.在AB、CD上分别取点P、S,连接PS,将RT△SAP绕正方形的对称中心O旋转180°得RT△QCR,从而得到四边形PQRS,试判断四 如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个 如图,P为正方形ABCD的对称中心,A(0,3),B(1,0)...P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC与M,点H从原点O出发沿X轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以根号2个 如图,正方形ABCD和正方形OEFG的边长均为4,O是正方形ABCD的旋转对称中心,则图中阴影部分的面积 四边形的性质如图,正方形ABCD中,AP=13cm,点A是点P关于EF为对称轴的对称点,求EF的长. 如图,在正方形ABCD中,AP=13cm,点A和点P是关于EF为对称轴的对称点.求EF的长. 如图,在正方形ABCD中,AP=13CM,点A和点P是关于EF为对称轴等的对称点,求EF的长. 如图,在正方形ABCD中,AP=13cm,点A和点P是关于EF为对称轴的对称点,求EF的长. 如图所示,点O是边长为a的正方形ABCD的对称中心,过点O作OM⊥ON交正方形的边于M、N.求四边形OMCN的面积如图 如图,点O是边长为a的正方形ABCD的对称中心,过点作OM垂直于ON交正方形的边于MN两点,求四边形快啊,快的加钱 两道数学题目~! 急啊 ~!帮下忙咯~!一、 如图,正方形ABCD的边长为a,在AB,AD上分别取点P、S,连结PS.将Rt△SAP绕正方形的对称中心O旋转180°得Rt△QCR,从而得到四边形PQRS.试判断四边形PQRS能否成为长 O是正方形ABCD的对称中心,正方形边长为a,OM垂直于ON,求四边形OMCN的面积 如图,已知四边形ABCD是以O为对称点的中心对称图形,四边形BCED是以点P为对称中心的中心对称图形,EF垂直A快点额,急吖、、如图,已知四边形ABCD是以O为对称点的中心对称图形,四边形BCED是以 一道很难很难的初三数学 大师级人物进啊!如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于m 点H从原点O出发,沿X轴的正半轴方向以1个单位美妙速度运动,同时,点R从O出发沿OM方向以 有追分·~如图正方形ABCD的边长为2cm在对称中心O处有一钉子动点P Q同时从点A出发点P沿A-B-C方向以每秒2cm的速度运动到点C停止点Q沿A-D方向以每秒1cm的速度运动到点D停止P Q两点用一条可伸缩的 如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿着A→B→C方向以每秒 的速度运动,到点C停止,点Q沿A→D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸 如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿着A→B→C方向以每秒 的速度运动,到点C停止,点Q沿A→D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸 正方形ABCD的边长为a.将足够大的正方形OMNP的一顶点放在正方形ABCD的对称中心O点正方形ABCD的边长为a.操作与计算:将足够大的正方形OMNP的一顶点放在正方形ABCD的对称中心O点,且OM⊥BC,OP⊥DC.