lim(n→∞)〖(1-λ/n)^n 〗=e^(-λ) 是怎么从e 的定义里推导出来的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:31:56
x){6QYOvvlyַ=Ow=(noTO3lhT6bxGAPAbm*XebXUEFH+hP[A8EC~6cmy/u?˳۞6}s>D@ll+@lx{)Oo
2GHT<;PL 2{
lim(n→∞)〖(1-λ/n)^n 〗=e^(-λ) 是怎么从e 的定义里推导出来的?
lim(n→∞)〖(1-λ/n)^n 〗=e^(-λ) 是怎么从e 的定义里推导出来的?
lim(n→∞)〖(1-λ/n)^n 〗=e^(-λ) 是怎么从e 的定义里推导出来的?
e的定义就是
lim(n→∞) (1 +1/n)^n =e
那么
lim(n→∞) (1 -λ/n)^n
=lim(n→∞) [(1 -λ/n)^ (-n/λ)] ^-λ
=lim(n→∞) [1+ (-λ/n)]^ (-n/λ) ^-λ
而
显然n趋于∞的时候,-λ/n也趋于0,-n/λ趋于无穷,
所以
lim(n→∞) [1+ (-λ/n)]^ (-n/λ)= e,
于是
lim(n→∞) (1 -λ/n)^n= e^(-λ)