第一题已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且在区间(π/6,π/3)上有最小值,无最大值求w的大小.第二题已知函数f(X)=sin(wx+b)(w>0,0≤b≤π)是R上的偶函数,其图像关于(3π/4,0)对称,且在区间[0,π
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:22:52
xKNPⰍ6`Ȅ811DeXE"b%4-&@#P`zza<Љ9q:<ܧ,0Rv}"vK`cy9V PG.Eműܦ6e05mέҡ>K~BS[6Sv\s§N5YflaM9p@c9
/" Y!ھ7
wm\3XE&Jpe{j)Ki1M`Fb)5B6i>வU0{7@\"rs=ba>"'ɱ~Ez
X<9V
Sa
WtﻅQ"!Cd;XD>=ӓstzV
第一题已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且在区间(π/6,π/3)上有最小值,无最大值求w的大小.第二题已知函数f(X)=sin(wx+b)(w>0,0≤b≤π)是R上的偶函数,其图像关于(3π/4,0)对称,且在区间[0,π
第一题
已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且在区间(π/6,π/3)上有最小值,无最大值求w的大小.
第二题
已知函数f(X)=sin(wx+b)(w>0,0≤b≤π)是R上的偶函数,其图像关于(3π/4,0)对称,且在区间[0,π/2]上是单调函数,求b和w的值.
第三题
设w>0若函数f(x)=2sinwx.在[-π/3,π/4]上单调递增求w的取值范围.
复制吧
第一题已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/3),且在区间(π/6,π/3)上有最小值,无最大值求w的大小.第二题已知函数f(X)=sin(wx+b)(w>0,0≤b≤π)是R上的偶函数,其图像关于(3π/4,0)对称,且在区间[0,π
第一题:
w=2/3.由已知两函数值相等带入f(x)中利用和差化积可得出w=2/3+k或w=6k.
有函数在给出区间上无最值可得出 0
[非常急]已知函数f(x)=根号3sin(wx+φ)-cos(wx+φ)(0
已知函数f(x)=根号3sin(wx+φ)-cos(wx+φ)(0
求教:已知f(x)=根号3*sin(wx+a)-cos(wx+a) (0
已知函数f(x)=√3sin(wx+φ)-cos(wx+φ)(0
已知函数f(x)=根号3sin(wx+a)-cos(wx+a)(0
已知函数f(x)=根号3sin(wx+φ)-cos(wx+φ)(0
已知函数f(x)=√3 sin( wx+φ)-cos(wx+φ) (0
已知函数f(x)=根号3sin(wx+fai)-cos(wx+fai)(0
已知函数f(x)=√3 sin( wx+φ)-cos(wx+φ) (0
已知函数f(x)=√3sin(wx+φ)-cos(wx+φ)(0
已知函数f(x)=sin(wx+π/3)(w>0)的单调增区间为
已知函数f(x)=根号3sin(wx+φ)++(w>0,-π/2
已知函数f(x)=根号3sin(wx+φ)++(w>0,-π/2
已知函数f x=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)(w>0,0
已知函数f(x)=sin wx-cos wx最小周期为π 求w 若f(a/2)=1/3求sin2a的值
f(x)=sin(2wx)+√3cos(2wx)怎么化成f(x)=sin(2wx+π/3)
已知函数f(x)=sin(wx+φ)(w
已知函数f(x)=sin(wx+φ)(w