证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:39:34
证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除
x){ٌ>KlgS

证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除
证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除

证明:若N为正整数,则(2N+1)^2-(2N-1)^2一定能被8整除
(2n+1)^2-(2n-1)^2
=[(2n+1)+(2n-1)][(2n+1)- (2n-1)]]
=(4n)(2)=8n
因为n不为0
所以8n一定是8的倍数,即8n能被8整除

(2n+1)^2-(2n-1)^2=[(2n+1)+(2n-1)][(2n+1)- (2n-1)]]=(4n)(2)=8n