设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:48:22
设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为
x͒OK0-xlEƄz%(E/m”UD E\'^Ì&m_) =,\q>?A-v({XƝfF↻`Dl:}Y?I<P=g m?S|{B򇐍K44DYw 3baj(Eim: KFOzndVF5$'6 z )Б qeFtV@^eQ^H+#kRr;)|

设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为
设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为
若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为

设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为
由于x>0,y>0
于是原不等式可以写成
a>=[x+√(xy)]/(x+2y)
令x=ky,k>0
则不等式可以写成
a>=(1+√k)/(1+2k)
令f(k)=(1+√k)/(1+2k) k>0
原不等式即为a>=f(k)max
f'(k)=(1-2k)/[2√k(1+2k)^2]
令f'(x)=0
则k=1/2
带入得f(k)max=1/2+√2/4
于是a>=1/2+√2/4
则a的最小值为1/2+√2/4

设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为 设对任意实数x>0,y>0.若不等式x+√xy≤a(x+2y)恒成立,则实数a的最小值为若不等式x+2√(xy)0,y>0恒成立,则实数a的最小值为 对任意实数X,若不等式|x+1|-|x-2| 已知对任意实数X,不等式-3 对任意实数x,若不等式|x-3|+|x-4|大于a大于0恒成立,则实数a满足? 若不等式x^2+2x+a>=-y^2-2y对任意实数x,y都成立,求实数a的取值范围. 若不等式x^2+2x+a>=-y^2-2y对任意实数x,y都成立,则实数a的取值范围是? 已知不等式1/X+1/Y+m/(X+Y)≥0对任意正实数X,Y 恒成立,求实数m的最小值 已知不等式1/x+1/y+m/(x+y)≥0对任意的正实数x,y恒成立,则实数m的最小值为 设命题p:对任意实数x,不等式x^2-2x>m恒成立; 命题q:方程x^2/m+3+y^2/5-m=设命题p:对任意实数x,不等式x^2-2x>m恒成立;命题q:方程x^2/m+3+y^2/5-m=1是椭圆.1:若q为真命题,求实数m的取值范围2:若“pvq”为真 有点难度设Y(X)是定义在R上的偶函数,且当X大于等于0时,Y(X)=2^x,若对任意的X属于[a,a+2],不等式Y(X+a)大于等于Y^2(X)恒成立,则实数a的取值范围是? 设y=f(x)(x∈R,且x≠0)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立若f(x)在(0,正无穷)上单调递增,解不等式f(1/x)-f(2x-1)≥0 设y=f(x)(x∈R,且x≠0)对任意非零实数x,y都有f(xy)=f(x)+f(y)成立若f(x)在(1,+∞)上单调递增,解不等式f(1/x)-f(2x-1)>=0 设函数f(x)对定义域内任意实数都有f(x)不等于0.f(x+y)=f(x)×f(y)恒成立.求证:对定义域内任意x都有f(x)>0 不等式:设实数x,y满足3 设R0={x|x∈R,x≠0},R为全体实数的集合,函数f:R0R对于任意的x,y∈R0都有f(x/y)=f(x)-f(y),且对任意的x∈(1,+∞)有f(x)>0.((1) 比较f(x)与0的大小2) 解关于实数t的不等式f(3t-2) >f(t^2+t+2) 设R0={x|x∈R,x≠0},R为全体实数的集合,函数f:R0R对于任意的x,y∈R0都有f(x/y)=f(x)-f(y),且对任意的x∈(1,+∞)有f(x)>0.((1) 比较f(x)与0的大小2) 解关于实数t的不等式f(3t-2) >飞(t^2+t+2) 已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y),且当x>0,f(x)>0.解不等式f( x2+x)