设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:24:18
设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心
xŔN@_ckjֶM(a$hzb^voP H (!rB x¶pڈ8fMfOWfYț%[^ hfub2^h8ЛUmBI }lZ龀%"FzNC&iԊD2YIG9(~,o| 8 xI9(W'^:㋝~ h`xd /̻-x2"VNX'

设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心
设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心

设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心
质心定义:x`=(∑μi*xi)/(∑μi),y`=(∑μi*yi)/(∑μi)
积分区域为:0≤x≤1,x^2≤y≤x
x`=(∑μi*xi)/(∑μi)=(∫xμdA)/(∫μdA)
=[∫∫x(x^2)ydxdy]/[∫∫(x^2)ydxdy]
=[∫x(x^2)(∫ydy]dx)/[∫(x^2)(∫ydy)dx]
=[∫x(x^2)(y^2/2)dx]/[∫(x^2)(y^2/2)dx]
=[1/2∫x(x^2)(x^2-x^4)dx]/[1/2∫(x^2)(x^2-x^4)dx] x^2≤y≤x
=[∫(x^5-x^7)dx]/[∫(x^4-x^6)dx]
=(x^6/6-x^8/8)/(x^5/5-x^7/7)
=(1/6-1/8)/(1/5-1/7) 0≤x≤1
=35/48
y`=(∑μi*yi)/(∑μi)=(∫yμdA)/(∫μdA)
=[∫∫y(x^2)ydxdy]/[∫∫(x^2)ydxdy]
=[∫(x^2)(∫y^2dy)dx]/[∫(x^2)(∫ydy)dx]
=[∫(x^2)(y^3/3)dx]/[∫(x^2)(y^2/2)dx]
=[1/3∫(x^2)(x^3-x^6)dx]/[1/2∫(x^2)(x^2-x^4)dx] x^2≤y≤x
=2/3[∫(x^5-x^8)dx]/[∫(x^4-x^6)dx]
=2/3(x^6/6-x^9/9)/(x^5/5-x^7/7)
=2/3(1/6-1/9)/(1/5-1/7) 0≤x≤1
=35/54
∴薄片质心坐标为(x`,y`)=(35/48,35/54)

设平面薄片所占的闭区域由抛物线y=x^2及直线y=x所围成,它在点(x,y)处的密度μ(x,y)=(x^2)y,求质心 设平面薄皮所占的闭区域p由y=(1-x^2)^(1/2);y=0所围成 求该均匀薄片的质心,急, 设平面薄皮所占的闭区域p由y=(1-x^2)^(1/2);y=0所围成 求该均匀薄片的质心 平面薄片所占闭区域D由抛物线y=1/2x^2及直线y=x所围成,在点(x,y)处的面密度为x^2+y^2,求薄片的重心 平面薄片所占区域D是由x+y=2,y=x和x轴所围成,他的面密度p(x,y)为(x,y)到原点距离的平方,求薄片质量M. 平面薄片所占的闭区域D由直线x+y=2,y=x,y=0 所围成,它的面密度u(x,y)=x+2y.求(1)该薄片的质量;(2)求该薄片质心所在的坐标(a,b) 求均匀薄片的质心,薄片所占闭区域为D,D是由y=1-x^2与y=2x^2-5所围成的闭区域, 1.设平面薄板所占闭区域D由直线 x+2*y=5及y=x 所围成,其面密度是v(x,y)=x^2+y^2 ,求此薄板的质量. 高数二重积分题!一个平面薄片所占的区域由不等式│x│+│y│≤1所确定,其上每一个点的面密度为f(x,y)=│x│+│y│,求该薄片的质量. 设平面区域D由抛物线y=-x^2与直线y=x围成 (1)求D的区域(2)D绕x轴旋转所成的旋转体的体积 用二重积分求此题设平面薄片占有平面区域D:x^2+y^2 设D是由曲线y=√x,x+y=2和x轴所围城的平面区域,求平面区域D的面积S 设平面薄板所占闭区域D由直线x+y=2,y=x及y=0所围成,其面密度是u(x,y)=x2+y2(指的是x的平方,y平方),求此薄板的质量. 已知平面薄片所占区域D={(x,y)|0≤x≤1,0≤y≤1)}面密度M(x,y)=xy,求其质量M 在直角坐标平面内,由直线x=1,x=0,y=0和抛物线y=-x^2+2所围成的平面区域的面积是? 计算二重积分∫∫x平方ydб,是由抛物线y平方= x及直线y=x-2所围成的闭区域 计算由曲线y=x^2与x+y+2所围成的平面区域的面积急 计算∫∫(D)xydxdy,其中区域D是由抛物线y=x^2-1及y=1-x所围成的区域