lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:17:06
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
xݓjA_e(qgv6%ѷ(vWڍaKmРlDHoF}CWpiV0gs cE^c|%qHy*mHA(/D{ɮHs`Uw٬yV *Y$<ҵa2^{nm? 3Qa ic{t].[i ZG//Ģpd,hNoI{a؋݄agt8+_!  @Ymdlrg5*V2UQ0"J@9ݬɆaesW8*xյA]0 j,a'$7%Z8Up+XPh. -cU6 Tщ(It L@DV b@a&WD.E ;$IK7{Ӵa)UY5(+>UtYG!O

lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
lim(n→∞)(sin(n+√(n^2+n)))^2
lim(n→∞)(1/n!(1!+2!+…+n!))

lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
1) 做过一道和你的第一题类似的题,写起来太多,不想再写一遍,提供给你,
首先,
    {sin[π√n(n+1)]}^2 = {sin[π√n(n+1)]}^2 - [sin(πn+π/2)]^2 + [sin(πn+π/2)]^2,

   |{sin[π√n(n+1)]}^2 - [sin(πn+π/2)]^2|
  = |sin[π√n(n+1)] - sin(πn+π/2)|*|sin[π√n(n+1)] + sin(πn+π/2)|

收起