lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:17:06
xݓjA_e(qgv6%ѷ(vWڍaKmРlDHoF}CWpiV0gscE^c|%qHy*mHA(/D{ɮHs`Uw٬yV *Y$<ҵa2^{nm?
3Qa
ic{t].[i
ZG//Ģpd,hNoI{a؋݄agt8+_! @Ymdlrg5*V2UQ0"J@9ݬɆaesW8*xյA]0
j,a'$7%Z8Up+XPh. -cU6 Tщ(It
L@DV
b@a&WD.E;$IK7{Ӵa)UY5(+>UtYG!O
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
lim(n→∞)(sin(n+√(n^2+n)))^2
lim(n→∞)(1/n!(1!+2!+…+n!))
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
1) 做过一道和你的第一题类似的题,写起来太多,不想再写一遍,提供给你,
首先,
{sin[π√n(n+1)]}^2 = {sin[π√n(n+1)]}^2 - [sin(πn+π/2)]^2 + [sin(πn+π/2)]^2,
而
|{sin[π√n(n+1)]}^2 - [sin(πn+π/2)]^2|
= |sin[π√n(n+1)] - sin(πn+π/2)|*|sin[π√n(n+1)] + sin(πn+π/2)|
收起
lim(n→∞)(sin(n+√(n^2+n)))^2lim(n→∞)(1/n!(1!+2!+…+n!))
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
高数极限lim(n×sin(2π√(n∧2+1))) n→+∞
计算极限lim(n→∞){1+ sin[π√(2+4*n^2)]}^n
lim(1/n)sin n (n→∞)
求极限 lim Sin[pi*√(n^2+1)] n→∞
求极限lim(n→∞) sin²[π√(n²+n)]怎么解
Lim(n→∞) 2的n次方sin x/2的n次等于多少?
lim 2^n *sin(x/2^n)n→∞求极限
求极限.lim n→∞ 2^n sin (π/2^n)
lim(n→∞){2^n[sin(x/2^n)]}求详细过程,谢谢!
求极限lim(n→∞)sin√(n^2+1)π.可以直接lim(n→∞)sin√(n^2+1)π=sinlim(n→∞)√(n^2+1)π=sinnπ=0吗?
用夹逼定理求lim(n→∞)[√(n^2+n)-n]^(1/n)
用夹逼定理求lim(n→∞)√[(n^2+n)-n]^(1/n)
lim x→n (√n+1-√n)*√(n+1/2)lim x n→∞ (√n+1-√n)*√(n+1/2)
lim n→∞ sin pi√(n^2+a^2) (a不等于0)自己想出来了sin(pi√(n^2+a^2)=(-1)^n sin(pi√(n^2+a^2)-npi)=(-1)^n*sin(pia^2/(√(n^2+a^2)+n))(-1)^n是有界函数 lim n→∞sin(pia^2/(√(n^2+a^2)+n))=0所以sin(pi√(n^2+a^2)=0SNOWHORSE70121
求极限lim n→∞ 根号n乘以sin n 除以n+1
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞