已知cos(π/4+x)=3/5,17π/12<x<7π/4,求sin2x+2sin平方x/(1-tanx)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:46:39
已知cos(π/4+x)=3/5,17π/12<x<7π/4,求sin2x+2sin平方x/(1-tanx)的值
已知cos(π/4+x)=3/5,17π/12<x<7π/4,求sin2x+2sin平方x/(1-tanx)的值
已知cos(π/4+x)=3/5,17π/12<x<7π/4,求sin2x+2sin平方x/(1-tanx)的值
17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
有更简单点的方法,可以免去求解sin x 和 cos x 的麻烦
解法如下:
原式=2sinx(sinx+cosx)/[(cosx- sinx)/cosx]=2sinxcosx(sinx+cosx)/(cosx- sinx)
=sin2x*sin(x+4/π)/cos(x+4/π)=-cos[2(x+4/π)]*sin(x+4/π)/cos(x+4/π)
全部展开
有更简单点的方法,可以免去求解sin x 和 cos x 的麻烦
解法如下:
原式=2sinx(sinx+cosx)/[(cosx- sinx)/cosx]=2sinxcosx(sinx+cosx)/(cosx- sinx)
=sin2x*sin(x+4/π)/cos(x+4/π)=-cos[2(x+4/π)]*sin(x+4/π)/cos(x+4/π)
=-(2cos^2(x+4/π)-1)*sin(x+4/π)/cos(x+4/π)
将sin(x+4/π)=-4/5, cos(x+4/π)=3/5带入后求得原式=-28/75
这样可以求得更简单些~
收起
17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²...
全部展开
17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
收起