已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:37:15
已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{
xT_KP*y i{K%}mAU0N[֎!VVMw 7)_a7u2I~wι Y|y8{H jx6lຳ`ŜUܚ{!/(Qnx }К?'{Q^^hϪw c 2Eq~ A&HMb:Z՞hbXʊ44!.*bD̑R$ILJCHb2oi"?hж%ߥPWQ #|D"1nx˹pp]93A=4/z$\q:UHv;Bm(L}n\D*P,˛E$!Řffag?ϭI

已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{
已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x
已知函数f(x)的图象在[a,b]上,定义:
f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
⑵已知函数f(x)=x²,x∈[-1,4],是[-1,4]上的“k阶收缩函数”,求K范围

已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{
4

(2)f1(x)=x² x∈[-1,0) f2(x)=1 x∈[-1,1)
0 x∈[0,4] x² x∈[1,4]
则[f2(x)-f1(x)]/(x-a)
=[f2(x)-f1(x)]/(x+1)=1-x x∈(-1,0)
1/(x+1) x∈[0,1...

全部展开

(2)f1(x)=x² x∈[-1,0) f2(x)=1 x∈[-1,1)
0 x∈[0,4] x² x∈[1,4]
则[f2(x)-f1(x)]/(x-a)
=[f2(x)-f1(x)]/(x+1)=1-x x∈(-1,0)
1/(x+1) x∈[0,1)
x²/(x+1) x∈[1,4]
最大为8 又当k为8,x=-1时f2(x)-f1(x)≤k(x-a)成立
k=8

收起

1)f1(x)=cosx f2(x)=0
(2)f1(x)=x² x∈[-1,0) f2(x)=1 x∈[-1,1)
0 x∈[0,4] x² x∈[1,4]
则[f2(x)-f1(x)]/(x-a)
=[f2(x)-f1(x)]/(x+1)=1-x x∈(-1,0)
...

全部展开

1)f1(x)=cosx f2(x)=0
(2)f1(x)=x² x∈[-1,0) f2(x)=1 x∈[-1,1)
0 x∈[0,4] x² x∈[1,4]
则[f2(x)-f1(x)]/(x-a)
=[f2(x)-f1(x)]/(x+1)=1-x x∈(-1,0)
1/(x+1) x∈[0,1)
x²/(x+1) x∈[1,4]
最大为8 又当k为8,x=-1时f2(x)-f1(x)≤k(x-a)成立
k=8

收起

已知函数f(x)=1+根号(2x-3)有反函数,且点(a,b)在函数f(x)的 图象上,又在其反函数的 图象上,求a,b的 值. 已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{f(x)|x∈D}表示函数f(x) 已知函数f(x)的图象在[a,b]上,定义: f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]), f2(x)=max{f(t)丨a≤t≤x}(x已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)丨a≤t≤x}(x∈[a,b])其中,min{ 用C语言编程,已知f(x)=(1+x^2),编写函数用梯形法计算f(x)在区间[a,b]上的定积分 matlab 求函数f(x)在[a,b]上的定积分的程序 已知函数f(x)是R上的增函数.A(0,-1),B(3,1)是其函数图象上的两点,那么|f(x+1)| 已知点P(2,5)既在函数f(x)=kx加b图象上又在它的反函数图象上,求k,b的值,并画出函数y=|f(x)|的图象 急 一道函数图象题已知函数y =f(2x+1)是定义在R上的奇函数,函数y=g(x)的图象与函数y =f(x)的图象关于直线y=x对称,则g(x)+g(-x)的值为A.2 B.0 C.-1 已知函数f(x)=x+x/a,(a>0),判断函数f(x)在区间(0,根号a)上的单调性,并用定证 已知函数f(x)=lg(1-x/1+x),函数g(x)图象与函数y=-(1/x+2)的图象成轴对称,设F(x)=f(x)+g(x) (1)求函数F(x)的解析式及定义域 (2)在函数F(x)图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直,求出坐标 已知函数f(x)=lg(1-x/1+x),函数g(x)图象与函数y=-(1/x+2)的图象成轴对称,设F(x)=f(x)+g(x) (1)求函数F(x)的解析式及定义域 (2)在函数F(x)图象上是否存在两个不同的点A,B,使直线AB恰好与Y轴垂直,求出坐标. 已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有惟一零点,如果用“二分法”求这个零点(精%C已知图象连续不断的函数y=f(x)在区间(a,b)上有惟一零点(b-a=0.1),如果用二分法求这个零点(精确到 定义在R上的函数f(x)满足F(4)=1 ,f'(x)为f(x)的导函数,已知函数y= f'(x)的图象如右图所示.若两正数a、b满足f(2a+b)<1,则(b+2)/(a+2)的取值范围是?答案C.(1/2,3) 定义在R上的函数f(x)满足F(4)=1 ,f'(x)为f(x)的导函数,已知函数y= f'(x)的图象如右图所示.若两正数a、b满足f(2a+b)<1,则(b+1)/(a+1)的取值范围是? 已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证 已知函数f(x)=ax^3+(a-1)x^2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性没学导数! 1 已知函数f(x)=a^x+b的图象过点(1、3),且它的反函数f^-1(x)的图象过(2、0)点,试确定f(x)的解析式.2 已知函数f(x)=log下底a (3+x)/(3-x) (a>0且a不等于1),判断f(x)奇偶性.3 判断f(x)=x-2/x在(0,正无穷大)上的单 已知函数y=f(x)在R上是减函数,A=(0.-2) ,B(-3.2)在其图象上,则不等式-2