证明:1002^2003>2003的阶乘

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:40:05
证明:1002^2003>2003的阶乘
xTj@CIlʆ֗Ŵ/}THS'vC11)NZIA'BHk^0{93j@{P_x?WoQ7~c4Fg>qukMS a_agOb0+F:# ԱlTPbbic 9Vrɛ@bd]l])toNu~#G-zVJXQ-(RcW U+,ބUGd<6U98}In[ћJo!#k3-CD/OY pퟳ `9;co[-2,:qX<w!+]ol2Ne1qB6l U2D4[a'pvmb` |^WhT22

证明:1002^2003>2003的阶乘
证明:1002^2003>2003的阶乘

证明:1002^2003>2003的阶乘
证明这个结论就行,
a+b=2004
因为(a+b)²-4ab=(a-b)²≥0
所以 (a+b)²≥4ab
则 ab≤(a+b)²/4=1002²
(当且仅当a=b=1002时等号成立)
所以 1002²> 1*2003
1002²>2*2002
1002²>3*2001
.
1002²>1001*1003
1002≥1002
以上式子相乘,
即得:1002^2003>2003的阶乘

参考答案\x09眼泪的存在,是为了证实悲伤不是一场幻觉。

二楼回答的很好

2003阶乘=(2003·1)(2002·2)(2001·3)(2000·4)···(1003·1001)·1002
=(1002+1001)(1002-1001)·(1002+1000)(1002-1000)·(1002+999)(1002-999)·(1002+998)(1002-998)···(1002+1)(1002-1)·1002
...

全部展开

2003阶乘=(2003·1)(2002·2)(2001·3)(2000·4)···(1003·1001)·1002
=(1002+1001)(1002-1001)·(1002+1000)(1002-1000)·(1002+999)(1002-999)·(1002+998)(1002-998)···(1002+1)(1002-1)·1002
=(1002²-1001²)·(1002²-1000²)·(1002²-999²)·(1002²-998²)······(1002²-1²)·1002
<1002²·1002²·1002²·1002²·1002²······1002²·1002
=1002^2003

收起