球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:36:41
x){>Egve;:VCv͔ʔ*[͔s;
FřyRηA5LRl5
M5Lm@ 'P
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
球面的三重积分
设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分为多少
用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o?
用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o?
∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分.
设∑为上半球面x^2+y^2+z^2=1(z>=0)则对面积的曲面积分∫∫ds=?
三重积分 球面坐标
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=1.
高数三重积分利用球面坐标计算三重积分Ω根号下x^2+y^2+z^2dv其中Ω是由锥面z=根号x^2+y^2 及球面x^2+y^2+z^2=4围成的区域
三重积分球面坐标系的问题
$$$︸(x^2+y^2+z^2)dv,其中︸是由球面x^2+y^2+z^2=1所围成的闭区域,计算此三重积分
计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的区域.感激不尽!
利用球面坐标计算三重积分∫∫∫x^3yzdxdydz,期中Ω是由曲面x^2+y^2+z^2=1与曲面x=0,y=0,z=0围成的在第一卦限的闭区域.顺便问下在球面坐标下x^2+y^2+z^2=r^2吗?
三重积分∫∫∫z∧2dv,其中Ω是由球面x∧2+y∧2+z∧2=2z所围成的闭区域
曲面积分∫∫(a^2+x^2+y^2)^0.5 dS 范围为球面x^2+y^2+z^2=a^2的上半部分
求对面积的曲面积分∫∫zds,其中∑为球面x^2+y^2+z^2=R^2设∑1表示上半球面:z1=√(R^2-x^2-y^2),∑2表示下半球面z2= —√(R^2-x^2-y^2)
∑为上半球面z=√(1-x^2-y^2)的上侧,则对坐标的曲面积分∫∫y^3dxdy=?
利用三重积分计算球面x^2+y^2+z^2=2(z大于等于0),平面z=1围成图形的体积
高数球面坐标系下三重积分的计算,