已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:39:29
已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x)
x1N01VmeN<L^(@ԄEUTHL-0i9WN{/1olL?Uqo& t7zy|R'}{̩ȓ(S["!lQ=^`i'|A|!2-ݪ2

已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x)
已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x)

已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x)
(1)令x=0,y=0 所以F(0)+F(0)=F(0) 所以F(0)=0
然后令y=-x ,则F(x)+F(-x)=F(x+(-x))=F(0)=0
所以F(X)+F(-X)=0,所以F(-X)=-F(X)
所以F(X)是奇函数
(2)由结论1得F(-X)=-F(X)
当X>0时,F(X)0>F(X)
又因为X>0,所以-X-X
所以当X>-X时,F(X)

判断下列函数的奇偶性已知定义在r上的函数f(x)对任意实数x,y恒有f(x) f(y)=f(x y)打错了,题目是判断下列函数的奇偶性,已知定义在r上的函数f(x)对任意实数x,y恒有f(x)+ f(y)=f(x +y) 已知定义在R上的函数y=f(x)对任意的x都满足f(x-1)=-f(x),当-1≤x 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数 已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);(2)当x>1是,f(x)>0.求证:(1)f(1)=0;(2)对任意的x属于R,都有f(1 已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的 题1:已知f(x)是定义在R+上的函数且对任意实数x,y属于R+,恒有f(xy)=f(x)+f(y),对x>1恒有f(x) 已知定义在R*上的函数f(x)满足下列条件:1、对定义域内任意x,y,恒有f(xy)=f(x)+f(y);2、当x>1时,f(x) 已知定义在R上的函数f(x)对任意实数x,y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x) 已知定义在R上的函数F(x)对任意x,y恒有F(x)+F(y)=F(x+y),且当X>0时,F(x) 已知定义在R上的函数y=f(x)满足以下三个条件:(详解) 已知定义在R上的函数y=f(x)满足以下三个条件:(1)对任意的x∈R,都有f(x+4)=f(x);(2)对任意的x1,x2∈R,且0≤x1 已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>1已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>11) 求证 对于x∈R,f(x)>0恒成立2)证 y=f(x)在R上为增函 已知函数 y=(x)是定义在R上的奇函数,且f(2)=0,对任意x属于R,都有f(x+4)=f(x)+f(4)成立,则f(2008)等于多少? 定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f定义在R+上的函数f(x)满足:1.对任意x,y∈R,都有f(xy)=f(x)+f(y) 2.当x>1时,f(x)>0.1.求证:f(x)在R+上是增函数2.求证:f(y/x)=f(y)-f(x 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数