曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:38:21
x){6{˹/_Qj 06LLҭШЪҮLJ֨46JTT>uŋ+@z%Ӟ[nTOUlg0/|86-|6-v>ņFг@'G2
曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧
曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧
曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧
高斯公式解决
你这道题没有说清是谁的表面 曲面的区域是什么?
曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0
曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0
设∑为曲面z=x^2+y^2(z≤1)的上侧,求曲面积分∫∫(x+z^2)dydz-zdxdy诉求
曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0
两道简单的计算曲面积分(求帮助)1 计算曲面积分∫∫Σ x^3 dydz+(1-3x^2y)dzdx+2z dxdy,其中Σ为方程x^2+y^2=z(0≤z≤1)所确定的曲面的上侧2 计算曲面积分∫∫Σ (Z^2+x)dydz+z dxdy的值,其中Σ为旋转抛
计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧
计算∫∫3dydz+ydzdx+(z^2+2*a/3)dxdy,其中积分曲面为锥面x^2+y^2=(a-z)^2,z=0,z=a所围成的外侧.
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下侧不要用两类曲面积分间关系转化为第一类曲面积分做,就直接按第二类曲面积分算下,
计算曲面积分I=∫∫(x^3z+x+z)dydz-(x^2yz+x)dzdx-(x^2z^2+2z)dzdx,其中∑为曲面z=1-x^2-y^2(z≥0)上侧
计算曲面积分∫∫ 2x z^2 dydz + y(z^2+1) dzdx +9z3 dxdy其中曲面为z=x^2+y^2+1 (1
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1-x^2-y^2的下侧详细过程~~谢谢~~~
计算曲面积分∫∫(z^2+x)dydz,其中S是旋转抛物面z=(x^2+y^2)介于平面z=0及z=1之间的部分的下侧.求解,在线等
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面上方的上侧
计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-y^2(z≥0)的上侧.-π 利用高斯公式 我解出的答案为0
关于曲面积分的疑问∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧∫∫x^3dydz+y^3dxdz+z^3dxdy,其中Σ为球面x^2+y^2+z^2=a^2的外侧.疑问是这样的:把它化成 3∫∫∫(x^2+y^+z^2)dv 为什么不
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下侧为什么对闭合曲面用高斯定理是正的?(平面的法向量是向下的,与z轴成夹角为钝角啊.应该是下侧吧,按理说