运筹学求矩阵的逆矩阵 3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:30:56
运筹学求矩阵的逆矩阵 3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1
x]J@ǯ2]Y4!$hoEP(>APA{N6_BXd;,r.>cz>瓷tv  0N|0;ְ 2}H-xr [*l)i\WЇ]V=-4wjx<&-׾ Ia&*d` +]3BW AOK3 cWz8^}H\}>$<7L}X5PVKr7eu-|(G_|JT4jsju4K8Pk_

运筹学求矩阵的逆矩阵 3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1
运筹学求矩阵的逆矩阵 3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1

运筹学求矩阵的逆矩阵 3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1
(A,E) =
3 -2 0 -1 1 0 0 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-3r3
0 4 9 5 1 0 -3 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-4r4,r2-2r4,r3+2r4
0 0 1 1 1 0 -3 -4
0 0 -2 -1 0 1 0 -2
1 0 1 0 0 0 1 2
0 1 2 1 0 0 0 1
r2+2r1,r3-r1,r4-2r1
0 0 1 1 1 0 -3 -4
0 0 0 1 2 1 -6 -10
1 0 0 -1 -1 0 4 6
0 1 0 -1 -2 0 6 9
r1-r2,r3+r2,r4+r2
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
交换行得
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
A^-1 =
1 1 -2 -4
0 1 0 -1
-1 -1 3 6
2 1 -6 -10
才看到你这题 不晚吧

A^-1 =
1 1 -2 -4
0 1 0 -1
-1 -1 3 6
2 1 -6 -10