一维小波变换和二维的是什么样的?怎样从一维变到二维?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:46:45
一维小波变换和二维的是什么样的?怎样从一维变到二维?
xWRI?NGT3[q!'&!  2 *Uiv̪'œY~!\zɫ+~D7-:wENsâǎ88k)?.׊ӯ_.枯zJ%aIn2lJyݥ֙oӿp'q/R&urIArb֖}R6%kKn5)LuyQtis>$;8[-GTq^VV֮SN6ݟfr8\jů?7Y)Q,QIË컓L뛲r6ֹO,WgQi/ږ:Vy1ܢ7 }AzF4Au};nS_3bX>D`~01>!;Sr^l.z4Tg9jOJU#sR~3dwAc\J(&اTE3|\z2A4I;)i bw1nƱM 6^^rĢ_,tGo?sa(SF6HF;ոk<ڒwNzs(jGg4~m&t4Ho}0յB0Ν /rĽ,WR/{3Q")6լʋ_72|TObS0L;qrkd1h b  Q)匪3`ק"Q@Nku T*Ⱥ_Q6ދS-J3YOg97>.>*>w)#t>궯~ Skgg V #Y y^c$3XhR|&Du{ Ty  ˳NXUpxu+uE:kU%S8zHEيe  rx5 [ ejL&䪘'RemŝTܬCNP ?ޯg@{.hO\F2vy{x}6[zcow Ďlf<'~^A?"UV;qۮ9`FnRAihO@ =c ??(sU“-M=MRyӠN]iĕ:DXѸ2"wߟ=.h rDz9'RDݞ)n&LjQE' rP-3jɠG5§H?96I*=VSb {x{5I4 \` @0PJ5:)Ʊ,zL; Ԁ0@GMmģRh:My@WGݣ *m2cC1-cimHBVV?ΘSr3;c1=ͨ.rIȿ :o|1 w>ϟ~gfj1qmYʴ"UEcmI3!y PB5/^o*

一维小波变换和二维的是什么样的?怎样从一维变到二维?
一维小波变换和二维的是什么样的?怎样从一维变到二维?

一维小波变换和二维的是什么样的?怎样从一维变到二维?
小波分析理论
小波分析是目前数学中一个迅速发展的新领网域,它同时具有理论深刻和应用十分广泛的双重意义.
小波变换的概念是由法国从事石油信号处理的工程师j.morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可.正如1807年法国的热学工程师j.b.j.fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到?名数学家j.l.lagrange,p.s.laplace以及a.m.legendre的认可一样.幸运的是,早在七十年代,a.calderon表示定理的发现、hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且j.o.stromberg还构造了历史上非常类似於现在的小波基;1986年?名数学家y.meyer偶然构造出一个真正的小波基,并与s.mallat合作建立了构造小波基的同意方法?多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家i.daubechies撰写的《小波十讲(ten lectures on wavelets)》对小波的普及起了重要的推动作用.它与fourier变换、视窗fourier变换(gabor变换)相比,这是一个时间和频率的局网域变换,因而能有效的从信号中提取资讯,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(multiscale analysis),解决了fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展.
小波分析的应用是与小波分析的理论研究紧密地结合在一起地.现在,它已经在科技资讯产业领网域取得了令人瞩目的成就.电子资讯技术是六大高新技术中重要的一个领网域,它的重要方面是影像和信号处理.现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复).从数学地角度来看,信号与影像处理可以统一看作是信号处理(影像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题.现在,对於其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析.但是在实际应用中的绝大多数信号是非稳定的,而特别适用於非稳定信号的工具就是小波分析.
事实上小波分析的应用领网域十分广泛,它包括:数学领网域的许多学科;信号分析、影像处理;量子力学、理论物理;军事电子对抗与武器的智能化;电脑分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用於数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等.在信号分析方面的滤波、去噪声、压缩、传递等.在影像处理方面的影像压缩、分类、识别与诊断,去污等.在医学成像方面的减少b超、ct、核磁共振成像的时间,提高解析度等.
(1)小波分析用於信号与影像压缩是小波分析应用的一个重要方面.它的特点是压缩比高,压缩速度快,压缩后能保持信号与影像的特征不变,且在传递中可以抗干扰.基於小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波网域纹理模型方法,小波变换零树压缩,小波变换向量压缩等.
(2)小波在信号分析中的应用也十分广泛.它可以用於边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等.
(3)在工程技术等方面的应用.包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面.

一维小波变换和二维的是什么样的?怎样从一维变到二维? 一维,二维小波变换过程是怎样的?分别求其C,C++编写的程序 二维生物是什么样的? 请问一维小波变换和二维小波变换的最大区别1、一维小波变换是否可以对图像进行分解2、若1成立,那么一维小波变换和二维小波变换对图像进行分别的最大区别是什么?3、若1成立,那么二维 从图A-B-C-D是怎样变换的. 一维二维离散小波变换详细的推导过程. 为什么二维小波变换不改变原始数据的大小但是一维小波变换改变数据的大小如图像做二维小波变换,如果原来是512*512,小波变换还是512*512的,但是一位数据做小波变换后,数据的大小就变了 四、 试写出二维旋转变换的坐标表达式和齐次坐标的矩阵表达式及变换矩阵 二次曲面请问z=xy是一个什么样的曲面?怎样做变换化为标准型 证明二维δ函数和一维δ函数的如下关系:δ(x,y)=δ(x)*δ(y)属于积分变换的一条题目,不懂求教 请问如何用matlab将二维的散点图反变换为二维图像? 二元函数和二维随机变量的区别?二元和二维有什么不同吗?二维随机变量一定是二元函数? 常数的拉普拉斯变换是多少?为什么 什么样的函数的拉普拉斯变换是常数 二维变换中绕原点的旋转相当于三维变换绕什么轴旋转? 怎样变换的? 二维图形变换矩阵题使用二维图形变换矩阵2 0 00 1 01 1 1后,产生的变换结果是什么? 曲线是二维的还是一维的?为什么? 关于二维数组的行数和列数有一个二维数组sz[,] 怎样获取sz 的行数和列数呢?