已知f[x]=X3立方-3x+m 在【0、2】上任取三个数a.b,c,均存在fa,fb,fc,为边的三角形 ,则m的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:46:34
已知f[x]=X3立方-3x+m 在【0、2】上任取三个数a.b,c,均存在fa,fb,fc,为边的三角形 ,则m的取值范围
xŒN@_{n's@C K5PD|Jb4 "F> S:PN-ELs3TΣѢ|\TGqjZsZt=@jseQ$A. ou*1ĉ pFFSV tihBSОw_|(_6sQ^%r"X@`VH4*, Syoأt:8KD 4q <Nȸk%EB R6!?^[,*N/ː-]#ݶiIRfSb+PWCXj|60GY* ߆

已知f[x]=X3立方-3x+m 在【0、2】上任取三个数a.b,c,均存在fa,fb,fc,为边的三角形 ,则m的取值范围
已知f[x]=X3立方-3x+m 在【0、2】上任取三个数a.b,c,均存在fa,fb,fc,为边的三角形 ,则m的取值范围

已知f[x]=X3立方-3x+m 在【0、2】上任取三个数a.b,c,均存在fa,fb,fc,为边的三角形 ,则m的取值范围
由f′(x)=3x2-3=3(x+1)(x-1)=0得到x1=1,x2=-1(舍去)
∵函数的定义域为[0,2]
∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m-2,f(x)max=f(2)=m+2,f(0)=m
由题意知,f(1)=m-2>0 ①;
f(1)+f(1)>f(2),即-4+2m>2+m②
由①②得到m>6