关于exponential distribution(指数分布)的问题条件:现有两个随机分布变量,x和y.x和y都是指数分布的.随机变量M=x+y和N=x-y,是否也是指数分布?如果不是哪是按什么分布.(麻烦给出详细证明,)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:14:07
关于exponential distribution(指数分布)的问题条件:现有两个随机分布变量,x和y.x和y都是指数分布的.随机变量M=x+y和N=x-y,是否也是指数分布?如果不是哪是按什么分布.(麻烦给出详细证明,)
xV[OG+8Ci<6@Q*%JH%jd^.!\MC IBBv_73kXREU|ٝ9||̙3KZ)9WF؝{dd݇q岢q}鐪1ZLklUʧ5#yOiZK%!LSV< 'A7&j m.AxA\N;˴h}As}s]+&K=Cڙ*$p*ɜQNx,!fj҅(zй??5Yz#Zuzkݿ.]]6CQ:R뵀 d񒾑l曖xp@yڊϲ 9qt`kc/腛M UT"Qka#E5Ds8tx|Jk!0e7Tc ҹ",il ۣḙ ѣM4@ʬ<<$-JBI٥Wq\dW]z1$yџrG@r :%ߕ"4zW__L(QÿɠK^@8nwT5Gh%)UGgo; bCai$8G>CCpҬO~#̾j!??s^)#Q͡0:xXrR'2K ?h@][\/vޒJ,/#iZI™B'"꧶,{wzdg@[u;!yn: /淛7z )PS/ ZKv+)Wd0dd6['ra3N ?t.,`\$zjj=[ъeI v}H_<5_iۡ@ QbVaRV` El%u '3)n1U>YjyF&k0ihg3 w"+rjE4Il `XmZFs34;4&qvQ2T \B._L\Tu}>_Ǜ?$.H;`LoW 0hc3Gmar OOMeƫ=s1@$7`-HHxU~GÿC9 h

关于exponential distribution(指数分布)的问题条件:现有两个随机分布变量,x和y.x和y都是指数分布的.随机变量M=x+y和N=x-y,是否也是指数分布?如果不是哪是按什么分布.(麻烦给出详细证明,)
关于exponential distribution(指数分布)的问题
条件:现有两个随机分布变量,x和y.x和y都是指数分布的.
随机变量M=x+y和N=x-y,是否也是指数分布?如果不是哪是按什么分布.(麻烦给出详细证明,)

关于exponential distribution(指数分布)的问题条件:现有两个随机分布变量,x和y.x和y都是指数分布的.随机变量M=x+y和N=x-y,是否也是指数分布?如果不是哪是按什么分布.(麻烦给出详细证明,)
同学 你这个题计算量太大了 我简单说下思路吧 你一定得把分给你 我做了半小时 答案是都不是
首先 写出x的概率密度函数
写出y的概率密度函数
写出 x y 的联合概率密度函数
Fm(m)= p(M<= m) = p(x+y<=m)
分两钟情况 m<=0 时候 Fm(m)=0
当m>0时候 积分 ∫∫ f(x,y)dxdy 积分域x+y<m
(符号不好打得 如果你实在要答案 ,发个信息到邮箱 x20045620@126.com,或者加我百度HI)
有写符号我打不出来 我用word编辑出来 我留个邮箱在这里 你往我邮箱里发点什么 我发给米

M和N不是指数分布
指数分布不存在可加性
下面我来求M和N的密度函数(虽然很麻烦 不过你的分数很吸引人 呵呵)
不妨假设X属于参数是m的指数分布 Y属于参数是n的指数分布(M,N与m,n毫无关系的)
则P(X)=m*e^(-m*x),P(Y)=n*e^(-n*y), 其中x>0,y>0,m>0,n>0
下面求M的分布函数:
P(M<=t)=P(X+...

全部展开

M和N不是指数分布
指数分布不存在可加性
下面我来求M和N的密度函数(虽然很麻烦 不过你的分数很吸引人 呵呵)
不妨假设X属于参数是m的指数分布 Y属于参数是n的指数分布(M,N与m,n毫无关系的)
则P(X)=m*e^(-m*x),P(Y)=n*e^(-n*y), 其中x>0,y>0,m>0,n>0
下面求M的分布函数:
P(M<=t)=P(X+Y<=t)=∫0到t∫0到(t-x) P(X,Y)dydx① 注明:这是二重积分
如果X,Y独立(mutually independent)
则P(X,Y)=P(X)*P(Y)=m*n*e^(-m*x-n*y)
把它代入①则有P(M<=t)=1-[e^(-mt)]+[m/(n-m)]*{[e^(-nt)]-[e^(-mt)]}
上式对t求导数则可得M的分布函数了
P(M)=[(m*n)/(n-m)]*{[e^(-mt)]-[e^(-nt)]} 其中t>0
下面求N的分布函数:
P(N<=t)=P(X-Y<=t)=∫0到+∞∫0到(y+t) P(X,Y)dxdy② 注明:这也是二重积分
如果X,Y独立(mutually independent)
则P(X,Y)=P(X)*P(Y)=m*n*e^(-m*x-n*y)
把它代入②则有P(N<=t)=1-[n/(m+n)]*[e^(-mt)]
上式对t求导数则可得N的分布函数了
P(N)=[(n*m)/(n+m)]*e^(-mt) 其中t>0
这就是M和N服从的分布 好累...后面的不要复制粘贴 楼主明察

收起

M 和 N不一定是啥分布。啥结果都得不到。原因很简单,因为你不知道x y之间的关系
比如如果y=x,那么M是指数分布,N是0为常数了。

如果指数分布的参数是A, 而X与Y同分布,那么他们俩单独的分布,也就是有参数A的指数分布其实就是一个参数为1和A的伽马分布(GAMMA DISTRIBUTION).这个分布是有可加性的,也就是说X+Y的分布就是一个参数为2和A的伽马分布。你可以这样一直加下去。
同理,X-Y的分布也就是一个参数为0和A的伽马分布。...

全部展开

如果指数分布的参数是A, 而X与Y同分布,那么他们俩单独的分布,也就是有参数A的指数分布其实就是一个参数为1和A的伽马分布(GAMMA DISTRIBUTION).这个分布是有可加性的,也就是说X+Y的分布就是一个参数为2和A的伽马分布。你可以这样一直加下去。
同理,X-Y的分布也就是一个参数为0和A的伽马分布。

收起