【高二数学】关于一道数列极限题!已知等差数列{an}的前n项和为Sn,且a3=5,S3=9,又设bn=an*q^n(n∈N*),其中常数q满足lim(1+q+q^2+...+q^n)=3/2,试求数列{bn}的前n项和Sn*及limSn*

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:06:18
【高二数学】关于一道数列极限题!已知等差数列{an}的前n项和为Sn,且a3=5,S3=9,又设bn=an*q^n(n∈N*),其中常数q满足lim(1+q+q^2+...+q^n)=3/2,试求数列{bn}的前n项和Sn*及limSn*
xSMo@-km"@\|4$VꠔhCP R릡?z[*8ٙƅZ񶱑|DVw?6^* [ ュdg#9N&<-vWxs%WM+ {.3pshp`xzSac_f~~mo|" < ׇËgO_\.Աlcu+>[Vu/-B+YbNv:OfG(1Ԗ;+$*N~@3;J0-qd'ZE wȓ"Un7YNNȆ3d +fȓ L " i ӉFoBFǣ.=HRM6$ ^4ZbN'eHuҚ'`ymk! 7]]}[]&$+ST1؄!6czĮ7ixyW$;-:͛ 'NɘJBǢkiL0H0ē-NĮ=E1˦,a*hQλ?:k?)~]Z

【高二数学】关于一道数列极限题!已知等差数列{an}的前n项和为Sn,且a3=5,S3=9,又设bn=an*q^n(n∈N*),其中常数q满足lim(1+q+q^2+...+q^n)=3/2,试求数列{bn}的前n项和Sn*及limSn*
【高二数学】关于一道数列极限题!
已知等差数列{an}的前n项和为Sn,且a3=5,S3=9,又设bn=an*q^n(n∈N*),其中常数q满足lim(1+q+q^2+...+q^n)=3/2,试求数列{bn}的前n项和Sn*及limSn*

【高二数学】关于一道数列极限题!已知等差数列{an}的前n项和为Sn,且a3=5,S3=9,又设bn=an*q^n(n∈N*),其中常数q满足lim(1+q+q^2+...+q^n)=3/2,试求数列{bn}的前n项和Sn*及limSn*
S3=3a1+3d=9,a3=a1+2d=3解得:a1=1,d=2
则an=1+2(n-1)=2n-1
有因为lim(1+q+q^2+...+q^n)=lim(1-q^n)/(1-q)=1/(1-q)=3/2得q=1/3则bn=an*q^n=(2n-1)(1/3)^n=2n/3^n-1/3^n
设cn=2n/3^n,数列{cn}的前n项和Cn=2/3+(2*2)/3^2+...+(2*n)/3^n
Cn/3=2/3^2+(2*2)/3^2+...+(2*n)/3^(n+1)
两式相减得:Cn=3/2(1-1/3^n)-n/3^n
则数列{bn}的前n项和
Sn*=Cn-(1/3+1/3^2+...+1/3^n)=3/2(1-1/3^n)-n/3^n-(1/2(1-1/3^n))=1-1/3^n-n/3^n
limSn*=1

S=1+...=3/2
qS=...=3/2q
所以S-qS=1=3/2(1-q)
所以q=1/3
设a1=x,则a2=S3-a1-a3=4-x
由题意得,4-x-x=5-(4-x)
解得x=1
则d=2
所以Bn=(2n-1)*(1/3)^n
{bn}={1/3,1/3,5/27,....}
Sn*=(1+1+(n-1)*2)*n/2=n^2
那么limS*不存在(增函数)