已知:四边形ABCD的两条对角线AC、BD相交于E点,AC=a,BD=b,∠BEC=α(0°<α<90°),求此四边形面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:06:14
xŒNP_K;s
!@L!1!ׂ(C`+^)RkVhŜo8ϑ28njѼwSL¸z7>yu`,0d+-).'Cו`X
b@՝bNE1`]3
P0(48]=1C>8fbztTYeeAdL0<\qyNb&1hFLDvqeϽÃ<e/BDA32"fBHBFNv"O!)Fݯ>]TY[vUGEB@CZסnuRaҊRuHFd}x=YOz{_d>$Y_^
已知:四边形ABCD的两条对角线AC、BD相交于E点,AC=a,BD=b,∠BEC=α(0°<α<90°),求此四边形面积
已知:四边形ABCD的两条对角线AC、BD相交于E点,AC=a,BD=b,∠BEC=α(0°<α<90°),求此四边形面积
已知:四边形ABCD的两条对角线AC、BD相交于E点,AC=a,BD=b,∠BEC=α(0°<α<90°),求此四边形面积
过顶点D做DM垂直AC,交AC于M点
直角△DME中:DM=DE*sinα(∵∠BEC=α=∠MED,对顶角相等)
过B做BN垂直AC,交AC于N点
直角△BNE中:BN=BE*sinα(∵∠BEC=α=∠BED,同一个角)
S四ABCD=S△ACD+S△ABC
=1/2*AC*DM+1/2*AC*BN
=1/2*AC*(DM+BN)
=1/2*AC*(DE*sinα+BE*sinα)
1/2*AC*(DE+BE)*sinα
=1/2*AC*BD*sinα(∵AC=a,BD=b)
=1/2*a*b*sinα
S△ACD=(1/2)*AC*DEsin∠AED=(1/2)a*DEsinα
S△ACB=(1/2)*AC*BEsin∠BEC=(1/2)a*BEsinα
所以:S四边形ABCD=S△ACD+S△ACB=(1/2)absinα
空间四边形ABCD的两条对角线AC=a,BD=b,(0
已知:四边形ABCD的两条对角线AC BD相交于E点,AC=a,BD=b,角BEC=a(0
四边形ABCD的两条对角线互相垂直且相交于O.已知ac=4厘米,BD=5厘米,求四边形abcd的面积
已知:四边形ABCD的两条对角线AC、BD相交于E点,AC=a,BD=b,∠BEC=α(0°<α<90°),求此四边形面积
如图所示,已知平行四边形ABCD的两条对角线AC与BD交于点O,AB//CD,AO=CO .求证:四边形ABCD是平行四边形
高一向量题:已知四边形ABCD是菱形,AC和BD是它的两条对角线,求证AC⊥BD用向量的方法证明.
四边形ABCD的两条对角线AC、BD相交于点O,且四边形ABCD关于点O成中心对称,试说明四边形ABCD是平行四边形
空间四边形ABCD的两条对角线AC=4,BD=6,则平行于两对角线的截面四边形的周长的取值范围是多少
四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?
如图,四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?
如图,四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?
如图,四边形的两条对角线AC,BD互相垂直,AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?
已知四边形ABCD的两条对角线AC、BD相交于点O 若四边形ABCD的周长是28cm,△AOD的周长比△ABO的周长大2cm求AB、AD的长
已知AC、BD是四边形ABCD的对角线,求证AC+BD<四边形ABCD的周长
如右图,四边形ABCD的两条对角线互相垂直且相交于O.已知ac=4厘米,BD=5厘米,求四边形abcd的面积写算式
已知O点是正方形ABCD的两条对角线的交点,则AO:AB:AC
初二下学期数学几何题望详解已知:如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边的中点,如果AC=8,BD=10.求四边形A1B1C1D1面积
初二下学期数学几何图形望详解已知:如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边的中点,如果AC=8,BD=10.求四边形A1B1C1D1面积