设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:46:13
设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一.
xQN@vm,e]ŝNݰDR.h Q郐ic_<ڕm_˜97'kXf 7}q=`t>K_o>&¤uM Q }+x*%hƗkDREb%y2ZxwUx tq{V/(n,*mE4ń`E#`Au& 'f?q¥c6-ÑOCBj jcWQѵitzAr3JsNAZ~ƅl[3SMr]#

设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一.
设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限
上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一.

设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一.
limXn=1
限于篇幅,简略过程如下
Xn>0
X(n+1)-Xn=1/2(1/xn-xn)a=1
高中数学教师解答!
答案记采纳!

设数列Xn有下列定义:Xn=1/2Xn-1+1/(2Xn-1),(n=1,2,……)其中X0为大于零的常数,求n趋于无穷时,Xn的极限上面的是Xn-1,即比Xn小的一项,不是两倍的Xn减一. 设数列{xn}满足x1=1 xn=(4xn-1+2)/(2xn-1+7) 设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限. 设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限 设数列{ Xn } 满足│Xn+1-Xn│≤k│Xn-Xn-1│,n=2,3,...(0 设函数f(x)定义如下表,数列{Xn}(满足X0=5,且对于任意的自然数n,均有Xn+1=f(Xn),求x2011 求{Xn} Xn+1=2Xn-(Xn)的平方 设x1>0,且有Xn+1=根号6+xn,证明数列xn收敛并求出极限 证明收敛数列的有界性的问题因为数列{xn}收敛,设lim xn=a,根据数列极限的定义,对于ε=1,存在正整数N,当n>N时,不等式|xn-a|N时,|xn|=|(xn-a)+a|≤|xn-a|+|a|N时,|xn|=|(xn-a)+a|≤|xn-a|+|a| 请教一道数列极限的证明题设a>0,已知数列(Xn)定义如下:Xo>0,Xn+1=(1/2)*(Xn+(a/Xn)) (n=0,1,2····).求n-无穷大时,limXn 设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛. 已知数列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_____ 微积分证明下列数列收敛利用单调数列收敛原理证明下列数列收敛:(1)xn=p0+p1/10+p2/100+...+pn/(10^n)(2)x0=0,x(n+1)=1+sin(xn-1)设数列{xn}由下述递推公式定义:x0=1,x(n+1)=1/(1+xn),(n属于N).证明 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限. 设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限 设X1=1,xn=1+xn -1/(1+xn-1)(n=2,3…),证明数列{xn}收敛,并求其极限值. 设a>0 ,任取x1>0 ,令xn+1=1/2(xn+a/xn) (其中n=1,2…… ).证明数列{xn} 收敛 设X0=7,X1=3,3Xn=2Xn-1+Xn-2,证明数列Xn收敛,并求极限