a(x-x0)+b(y-y0)=0的方向向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:12:42
x)KԨЭ0NҨԭ4д5x>ٴO'L6IEi.D~-D~"XY=mNM/.H̳Y JH
a(x-x0)+b(y-y0)=0的方向向量
a(x-x0)+b(y-y0)=0的方向向量
a(x-x0)+b(y-y0)=0的方向向量
-(x-x0)/b=(y-y0)/a
方向向量:±{b,-a}
a(x-x0)+b(y-y0)=0的方向向量
设f(x,y)与φ(x,y)均为可微函数,且φ对y的偏导数不为零,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是:A .若fx(x0,y0)=0,则fy(x0,y0)=0B .若fx(x0,y0)=0,则fy(x0,y0)≠0C .若fx(x0,y0)≠0,
设点p(x0,y0)在直线Ax+By+C=0上,求证这条直线的方程可以写成 A(x-x0)+B(y-y0)=0
设点p(x0.y0)在直线Ax+By+C=0上,求证这条直线的方程可以写成A(X-x0)+B(y-y0)=0
证明过点m(x0,y0)与AX+BY+C=0垂直的直线为x-x0/A=y-y0/B
已知直线Ax+By+C=0(A2+B2不等于0)过点P(X0,Y0),则直线的方程可化成什么?A.A(x+x0)+B(y+y0)+C=0B.A(x+x0)+B(y+y0)=0C.A(x-x0)+B(y-y0)+C=0D.A(x+x0)+B(y+y0)=0麻烦给出证明,
设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是A、fx(x0,y0)=fy(x0,y0)=0;B、曲面z=f(x,y)在(x0,y0,z0)处具有水平的切平面;C、fxy(x0,y0)=0;D、dz|(x0,y0)=0;但是我找不出来哪个是错的?
椭圆的切线方程y-y0=-(b^2/a^2)*(x0/y0)(x-x0),它在x轴和y轴的截距分别是多少,
求证:曲线y=1/x上任一点处的切线与两条坐标轴构成的三角形的面积为常数P(x0,y0)切线方程y-y0=(-1/x0²)(x-x0).与x轴,y轴交于A(a,0),B(0,b).0-y0==(-1/x0²)(a-x0).b-y0=(-1/x0²)
圆的切线方程公式证明过圆(x-a)^2+(y-b)^2=r^2上点P(x0,y0)的切线方程为(x0-a)(x-a)+(yo-b)(y-b)=r^2过圆x^2+y^2+Dx+Ey+F=0上一点P(x0,y0)的切线方程为x0x+y0y+D[(X+X0)/2]+E[(Y0+Y)]+F=0过圆外一点P(x0,y0)圆的切线切线长
圆的切线方程公式证明过圆(x-a)^2+(y-b)^2=r^2上点P(x0,y0)的切线方程为(x0-a)(x-a)+(yo-b)(y-b)=r^2过圆x^2+y^2+Dx+Ey+F=0上一点P(x0,y0)的切线方程为x0x+y0y+D[(X+X0)/2]+E[(Y0+Y)]+F=0过圆外一点P(x0,y0)圆的切线切线长
点P(X0,Y0)在椭圆x^2/a^2+y^2/b^2=1上,(a>b>0),X0=acosB,Y0=bsinB,0
对于二元函数f'x(x0,y0)=0,f'y(x0,y0)=0则在点M(x0,y0)处f(x,y)A必连续B必须取极值C可能取极值
若点A(X0,Y0)在圆X^2+Y^2=1上运动,则点B(X0Y0,X0+Y0)的轨迹方程是多少?
椭圆内一点(X0,Y0)带入椭圆切线方程x0*x/a^2+y0*y/b^2=1是一条什么样子的直线?
设点P(X0,Y0)在直线Ax+Bx+C=0上,求证直线方程可以写为 A(x—x0)+B(y-y0)
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微