设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:48:32
x){n_RQ>TyF$C$#mvRMR>Zl(YlΧ۟~$/HN[dQ )
jjY`nh{]v/W<:O{7?7<;&yu
设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn
设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn
设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn
(2n-1)/(2n) < (2n-1)/根号下(4n^2-1)=根号下((2n-1)/(2n+1))
将这些式子全部相乘,即得证
设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:(1)bn
设bn=1/2*3/4*5/6*...*(2n-1)/(2n) ,求证:b1+b2+...+bn
设数列{bn},b1=1,bn+1=lnbn+bn+2,证明bn
lim(3an+4bn)=8 lim(6an-bn)=1 求lim(3an+bn) 要设3an+4bn=m 6an-bn=t第二题若an=(5-3x)^n 1)an存在极限,求x范围 2)an极限为零 求x范围
设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.
设数列{bn}满足bn=n^2/2^(n+1),证明:bn
设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式.
设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn 用数列an表示an+1;并证明;任意n属于设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn (1)用数列an表示an+1;并证明;任意n属于N*都
已知an=5^[2^(n-1)] -3,设bn={1/(an-6)}-{1/(an²+6an)},数列bn的前n项和为Tn,求证-5/16≤Tn<-1/4
数列{an}中,a1=1,a(n+1)=5/2-1/an.设bn=1/(an-2),求{bn}的通项公式(2)设cn=-3n*bn,求{cn}前n项和
设向量a=(x,2),b=(x+n,2x-3/2),函数fx=ab在[0,1]上的最小值和最大值的和为an数列bn的前n项和满足Sn+4bn=n(n∈N*)一问求an,2:证明{bn-1}为等比,并求bn bn=﹣(4/5)∧(n+1)+1对不对?3:令cn=﹣an(bn
设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2
设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1 -an}是等差数列,{bn+1-bn}是等比数列.1.求An Bn 通项2.求数列AN最小项及最小值3.是否存在K属于N*,使ak-bk属于(0.0.5)若存
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn
设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn
数列设a1=2,a(n+1)=2/(an+1),bn=|an+2/an-1|,n属于正整数,则数列{bn}的通项bn=已知数列1,1/2,2/1,1/3,2/2,3/1,1/4,2/3,3/2,4/1……则5/6是数列的第几项?
数列满足a1=1 an=2an-1-3n+6 设bn=an-3n 求证bn是等比数列
an=2n-5,bn=an/2^n,设bn的前n项和为tn,证明;1/4大于等于tn小于1