第二类曲面积分,极坐标计算∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,就说 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:24:26
xRMN@ F MvItC:ǫЀ8Ԥ (-TX.7h}ôRUWl,˚W.yh'!apÆMq}¯??e\[6kmB6p*VjB.`>Xkՙ{5 3?.1e4>W4eF"9mL(O|dfoޙUz؆u/mN?!zw|6%\A h3)=GCRaL!f -.O1*!tR_}b'PW9x?W-S#c/I=pMW3s%}ɼ+|tDhF6qJ/[3h[Z,#zG
]1=$WPLBDS|7+rO?{"4
第二类曲面积分,极坐标计算∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,就说 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这
第二类曲面积分,极坐标计算
∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,
就说 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这样,前侧和后侧的被积函数都变为了 cos^2(t),再对后侧取负号,那么两个积分加和为零了,可答案上前后侧两个积分是相等的啊,这是什么原因?
第二类曲面积分,极坐标计算∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,就说 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这
dydz面的投影是个矩形,不能那样代换.关于x是奇函数,但还有cosα关于方向角是奇函数,所以是相等关系,而不是相反数关系.
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下侧不要用两类曲面积分间关系转化为第一类曲面积分做,就直接按第二类曲面积分算下,
第二类曲面积分,极坐标计算∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,算 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这样,
第二类曲面积分,极坐标计算∫∫zdxdy+xdzdy+ydxdz,s是柱面x^2+y^2=1被平面z=0及z=3 所截部分的外侧.那个∫∫下面有s,就说 ∫∫xdydz ,以柱面坐标系代换 x=cost ,y=sint,z=z 将柱面分为前侧和后侧,可是这
第二类曲面积分计算,
计算曲面积分∫∫(z^2+x)dydz-zdxdy,其中S是旋转抛物面z=(x^2+y^2)/2介于平面z=0及z=2之间的部分的下侧.用第二类曲面积分做.
计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1-x^2-y^2的下侧详细过程~~谢谢~~~
求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧
曲面积分∫∫xdydz+y^2dzdy+zdxdy,Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧;求曲面积分
计算曲面积分∫∫xdydz+zdxdy ,S是平面x+y+z=1在第一卦限部分的上侧
计算曲面积分∫∫(∑)zdxdy,其中∑为下半球z=-√(a²-x²-y²)的下侧
用第二类曲面积分求xdydz+ydzdx+zdxdy积分曲面为球面x^2+Y^2+Z^2=A^2的外侧
第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之间的部分外侧.我想问的是这道题用分面投影法和用高斯公式做出的答案一样吗?书上用分面投影法得0,我自己用了
曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0
计算第二型曲面积分
第二类曲面积分
计算曲面积分I=∫∫(xdydz+ydzdx+zdxdy)/(x+y+z),其中积分曲面是2x+2y+2z=4的外侧,高数下的曲面积分,我用高斯算出来是0答案是4pi,为什么啊,
曲面积分和高斯公式求I=∫∫(z+2x)dydz+zdxdy,其中Σ是曲面z=x^2+y^2(0