如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°.如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,∠AMN+∠ANM的度数为 .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:58:05
xS]kP+0o䣉/HN~k"xUJ'lhk?`ΫI2l⍹8y>CyI_:ǣӍI!v@rW1Cn4b#\4laL0QsgU!J1fftt
mW7O&8jl5aMw,߇&ɣӆB]g|P
Jُ#Tvy_(:VWXL@J8/K0:HJp#((
9Ap9GFJ`E:M
rD$6*#X"H"S])*"pQU6r-^]GU8Gm\]"tF
?IKoM6Wxf@0
dh2Iep=~!kSpm@V?יˤz@ڰ,~#uΆrẌ́Zxq# 0
U(p\Ukl
>.w[ 2^0&v96?=~l
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°.如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,∠AMN+∠ANM的度数为 .
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°.
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,∠AMN+∠ANM的度数为 .
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°.如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,∠AMN+∠ANM的度数为 .
作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,
∵∠EAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°
如图,在五边形ABCDE中,AB=BC=CD=DE=EA,角CAD=二分之一∠BAE,求∠BAE的度数
五边形ABCDE中 AB=BC=CD=DE=EA 角CAD=1/2角BAE如图,在五边形ABCDE中,AB=BC=CD=DE=EA,角CAD=二分之一∠BAE,求∠BAE的度数初二数学题!要能看得懂!快!
如图,在五边形ABCDE中,AB⊥BC,DE‖BC,∠BAE=∠CDE,若∠AED=150°求∠BAE和∠BCD急 !急 !
请解析,如图,在五边形ABCDE中,∠BAE=120°...如下如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )A.100° B.110° C.120° D.1
如图,五边形ABCDE中,AB=BC=CD=DE=EA,∠ACD=½BAE,求∠BAEABCDE不是正五边形
如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90 AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小
如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°.如图,在五边形ABCDE中,∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN周长最小时,∠AMN+∠ANM的度数为 .
如图,在五边形ABCDE中,∠ABC=∠AED=90°,AB=AE=CD=1,BC+DE=1,求这个五边形ABCDE的面积.
在五边形ABCDE中,
在五边形ABCDE中,
如图五边形ABCDE
如图,五边形ABCDE
如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于多少度
如图 五边形ABCDE 中 AB=AE BC+DE=CD ∠BAE=∠BCD=12O ∠ABC+ ∠AED=180连接AD 求证 AD平分∠CDE
如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1,∠2,∠3的数量关系是什么,要有过程AB∥CD∠B+∠C=180五边形内角和=(5-2)X180=540即∠BAE+∠AED+∠EDC=540-180=360∠1+∠2+
1、如图,在五边形ABCDE中,∠ABC=∠AED, ∠BCD=∠EDC,BC=DE,M为CD的中点,则AM垂直
如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=根号2,求五边形ABCDE的周长
在凸五边形ABCDE中AB=BC=CD=DE=EA,且∠CAD=∠BAC+∠EAD.则∠BAE的度数为不是等边五边形!也不是108°。纠结!