用比较法证明1/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:01:54
用比较法证明1/3
xSJ@AZJM`U/-hX/h>D R/~LȤlbJb!$;s̙3a1j:A9znpaT6/^`Jr2_MWIyF6sp9oNKd߃dJ.t݆4:Cl5 aoTwa h*DO+&9yaqBv:w%n7nW7Z"$!@tYRk?1\]7u DPa$<$Pƥ!= lW& ObdT@l^\X23"fN5x]rWCJ1V3?!\.ن@\?e,5ՌhS4iOݢ# g#{a-|I&

用比较法证明1/3
用比较法证明1/3<=(x2-x+1)/x2+x+1<=3 我在等……

用比较法证明1/3
方法一:用判别式法求y=(x2-x+1)/x2+x+1的值域即可
方法二:先比较1/3与(x2-x+1)/x2+x+1的大小
作差:(x2-x+1)/(x2+x+1)-1/3
=2(x-1)²/3(x²+x+1)大于等于0
所以1/3

(x2-x 1)/(x2 x 1) =1-2x/(x^2 x 1) 因为x≥0时,x^2 1≥2x x^2 1 x≥3x 2x/(x^2 x 1)≤2/3 原式≥1-2/3=1/3 x≤0

∵当x≥0时 x²+x+1>0 当x<0时 x²+x+1=(x+1)²-x>0
∴x∈R时x²+x+1>0
∴(x²-x+1)/(x²+x+1)-1/3=[3(x²-x+1)-(x²+x+1)]/3(x²+x+1)
=2(x-1)²/3(x²+x+1)≥0
...

全部展开

∵当x≥0时 x²+x+1>0 当x<0时 x²+x+1=(x+1)²-x>0
∴x∈R时x²+x+1>0
∴(x²-x+1)/(x²+x+1)-1/3=[3(x²-x+1)-(x²+x+1)]/3(x²+x+1)
=2(x-1)²/3(x²+x+1)≥0
(x²-x+1)/(x²+x+1)-3=[(x²-x+1)-3(x²+x+1)]/(x²+x+1)
=-2(x+1)²/(x²+x+1)≤0
∴1/3≤(x²-x+1)/(x²+x+1)≤3

收起