矩阵理论(正规矩阵及Schur分解这一节的题)证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:21:36
矩阵理论(正规矩阵及Schur分解这一节的题)证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数)
xݑJ@_(k3.PB{%$)XZ$*mB$nۗݜ N(޽afpLREƓiYS/2& '޲ܕKǨz

矩阵理论(正规矩阵及Schur分解这一节的题)证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数)
矩阵理论(正规矩阵及Schur分解这一节的题)
证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数)

矩阵理论(正规矩阵及Schur分解这一节的题)证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数)
实对称矩阵一定可以对角化
对每个特征值开2k-1次方就行了