f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 14:29:55
x)KӨ|mO?]G'M|N:~<
f}>ټƧ
{7I
D+tv̴I*ҧv64q'\e^+w>%i*CMUWQQ
:ߠvP|=M02C.RHfA,
,`Uj_\g
/ sΚ
f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
极值点都是驻点,因此f'(π)=0.
g'(x)=f'(x)cosx-f(x)sinx,g'(π)=f'(π)cosπ-f(π)sinπ=0;
g''(x)=f''(x)cosx-2f'(x)sinx-f(x)cosx,
g''(π)=f''(π)cosπ-2f'(π)sinπ-f(π)cosπ
=-f''(π)
f(x)二阶可导,f(π)=0,f''(π)>0,x=π是f(x)的极值点,g(x)=f(x)cosx,则
f(x+2)+f(x-2)=f(x) f(0)=5求 f(18)
已知函数f(x)=1-sin πx/2,则f(0)+f(1)+f(2)+.+f(2010)=
f(x+π)=f(x)+sinx,0≤x
f(x)在(-∞,+∞) 二阶可导,f(x)/x=1,且f''(x)>0,证明f(x)>=x
f(x)=sinx,求导f('f(x)),f(f'(x)),[f(f(x))]'
已知f(x)满足f(x+y)+f(x-y)=2f(x)f(y),且f(x)≠0,若f(π/2)=0,求f(π)和f(2π)的值
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,若f(π /2)=0,求f(π )和f(2π).
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)乘f(y),且f(0)不等于0,若f(π/2)=0,求f(π)及f(2π)的值
已知f(x)满足f(x+y)+f(x-y)=2f(x)*f(y)且f(0)≠2,若f(π/2)=0,求f(π)及f(2π)
已知函数f(x)满足f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0,f(π/2)=0,求f(0),f(2π)的值
f(x)=x-(f(x)cosx在(0,π)的积分),求f(x)
设f(x)=x-∫(0,π)f(x)cosxdx,求f(X)
设f(x)=x-∫(0,π)f(x)cosxdx,求f(X)
f(x+y)=f(x)-f(y),那么f(-x)=f(0)-f(-x)=-f(-x).2f(-x)=0?
f(x)={0 -π
导数:f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)+f(y)+2xy,且f'(o)存在,求f'(x) f(1+x)=af(x),且f'(0)=b,求f'(1)
若f(x)=sinxπ/6,f(1)+f(2)+f(3)+.+f(102)