∫1/x(x+1)∧3dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 09:20:02
x){ԱPBBPQr
"},v6DA"ؤR*t|hE|`U31Dlӎ
/|tה>3i'ڞNXg_\g" :y
∫1/x(x+1)∧3dx
∫1/x(x+1)∧3dx
∫1/x(x+1)∧3dx
∫1/x(x+1)^3dx
=∫(x+1-x)/x(x+1)^3dx
=∫1/x(x+1)^2dx-∫1/(x+1)^3dx
=∫(x+1-x)/x(x+1)^2dx-∫1/(x+1)^3dx
=∫1/x(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫(x+1-x)/x(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫1/xdx-∫1/(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫1/xdx-∫1/(x+1)d(x+1)-∫1/(x+1)^2d(x+1)-∫1/(x+1)^3d(x+1)
到这里应该会做了吧.
∫e∧(-3x+1)dx
∫1/x(1+x^3)dx
∫x+1/(x-1)^3dx
求∫x/(1+x)^3 dx
∫ x/ (1+x)^3 dx
∫dx/x(x^3+1)
∫x^3/1+x^2 dx
∫(x-1)^2/x^3 dx
∫(X^3)/(1+X^2)dx
∫1/(x^3+x) dx
∫dx/x(1+x)
x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx
∫1/x(x+1)∧3dx
∫0~∞x/(1+x)∧3dx=
∫(2-3x)³dx ∫1/(2x+5)∧11dx
∫x^3/(x^8-2) dx∫(x^3-1)/(x^2+1) dx
∫1/(x^100+x)dx ∫1/(e^x+e^3x)dx
∫(x^3-x^2+x+1)/(x^2+1) dx∫(x+4)/(x^2-x-2) dx