∫1/x(x+1)∧3dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 09:20:02
∫1/x(x+1)∧3dx
x){ԱPBBPQr "},v6DA"ؤR*t|񨄙hE|`U31Dlӎ /|tה>3i'ڞNXg_\g":y

∫1/x(x+1)∧3dx
∫1/x(x+1)∧3dx

∫1/x(x+1)∧3dx
∫1/x(x+1)^3dx
=∫(x+1-x)/x(x+1)^3dx
=∫1/x(x+1)^2dx-∫1/(x+1)^3dx
=∫(x+1-x)/x(x+1)^2dx-∫1/(x+1)^3dx
=∫1/x(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫(x+1-x)/x(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫1/xdx-∫1/(x+1)dx-∫1/(x+1)^2dx-∫1/(x+1)^3dx
=∫1/xdx-∫1/(x+1)d(x+1)-∫1/(x+1)^2d(x+1)-∫1/(x+1)^3d(x+1)
到这里应该会做了吧.