设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:44:56
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),
x){n_F9+ubzmO?](|dW\\Ɏ)iiI:i@Lyٌkg5'?8ɮ>:OOSWHJԱI*ҧ`r~̀“={{YDŽ竻 :ȶ83H) Q6)ȌU *4BSLBA[L^lӎ БO 4M@F 1"-A

设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),

设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),
似乎不成立.
f(x)=sin(x) 在 [0,pi] 上.
f''(x)+f(x)=-sinx + sinx =0.若 f''(c)=f(c),则 f(c)=0,但 在 (0,pi)上,sinx>0.

设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c), 设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,f'(a)×f'(b)>0,证明:存在c,使得f''(c)=f(c) 数学题一阶导,设 f(X)在(a,b) 内二次可导,且xf(x)-f'(x) 微积分题的证明设f(x)在[a,b]上一阶可导,在(a,b)内二阶可导,且满足f(a)=f(b)=0,f'(a)f'(b)>0.试证明存在d属于(a,b)使f(d)=f''(d)参考答案上只有提示,说是两次构造函数,先设F(x)=f(x)e^(-x),再设G(x)=F(x)e^x 运用泰勒公式证明不等式设f(x)在[a,b]上一阶可导,在(a,b)上二阶可导,且满足f'(a)=f'(b)=0,证明存在x属于(a,b)使得|f''(x)|>=4 |f(b)-f(a)| /(b-a)^2 f(x)在[a,b]二阶可导,能够说明什么,是否f(x)一阶可导,f(x)连续呢? 设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2) f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)等式证明f(x)在[a,b]上一阶连续可导,在(a,b)内二阶连续可导,证存:存在c属于(a,b)使得f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c) 求大神证明:设f(x)在区间[a,b]上有一阶连续导数,记max|f(x)|=M(x归属于[a,b]),试证M 设 f(x)在〔a,b〕上具有一阶连续导数,且|f‘ (x)|≤M,f(a)=f(b)=0,求证∫(a,b)f(x)dx≤M/4(b-a)^2 设f(x)的一阶导在(a,b)内存在且有界,证明f(x)在(a,b)内有界 大学导数问题f(x)在[a,b]上一阶可导,在(a,b)上二阶可导,f(a)=f(b)=0,f'(x)在a,b处同号,证明存在t∈(a,b)使得f''(t)+2f'(t)+f(t)=0 设函数f(x)在区间【a,b】上有意义,在开区间可导,则()选项:A、f(a)*f(b) 设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否有界?怎么证 设f(x)在〔a,b〕上为正值的可导函数,证明,存在c(a 设f(x)在(a,b)内连续可导f'(x) 设函数f(x)在[a,b]可导 且f'(x) 设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a,b),使得f(ξ)=(b-ξ)*f'(ξ)