计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:44:37
计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1
xMNAF,!55l6ɒ38LτqO9 ,#y1h $d%Rӫޥvhۥ>q0md<ӻc]>Lǥ^TsT0o/V{|a1i> 4MT5mtnQlˌ i%vko>X}]\ba焪&ĊCf6d &jKŚ]*>%Ă#"Bm|$SqS&,Y.՟Co%mG!_T d k45Pg,T0]{ H9Q쫒TF7Y^ ,bJE~013ڕvdy6>K

计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1
计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1

计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1

计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1 z=(e^3y) +(x^2)Xsiny,求dz 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2y的右半圆周 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(2,0)x^2+y^2=2x的右半圆周 计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿曲线y=sinx到点(π,0)的弧段 验证积分I=∫(e^xsiny-2y+1)dx+(e^xcosy-2x)dy与路径无关 计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2/2=1到点(2,0)的弧 设曲线弧L为x^2+y^2=ax(a>0)从点A(a,0)到点O(0,0)的上半圆弧,求∫(e^xsiny-ay+a)dx+(e^xcosy-a)dy∫下面有个L,e^xsiny是e^x乘以siny 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=2x ∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2 ∫(e^xsiny+8y)dx+(e^xcosy-7x)dyL是从A(1,0)到B(7,0)的上半圆周,求详细过程,谢谢! ∫e^x[(1-cosy)dx-(y-siny)dy],其中c为区域 0≤x≤π,0≤y≤sinx的边界曲线取正向.求曲线积分P(x,y)=e^x(1-cosy) -对y求偏导数=e^xsinyQ(x,y)=e^x(siny-y) -->对x求偏导数=e^xsiny-ye^xI=∫∫(e^xsiny-ye^x-e^xsiny)dxdy=-∫∫(ye ∫L(e∧xsiny-2y+1)dx+(e∧xcosy+3y)dy,其中L是由点A(2,0)到点(0,0)的上半圆周x∧2+y∧2=2x y=xsiny+1 求dy/dx z=f(e^xsiny,x^2+y^2)其中f有连续二阶偏导数,求混合偏导 求由方程x^4-xy+y^4=xsiny所确定的隐函数的导数d^2y/dx^2在(0,0)处的值 计算二重积分∫[1,3]dx∫[x-1,2]e^( y^2) dy 设f(u,v)具有二阶连续偏导数,z=f(e^xsiny,x^2+y^2). 计算δ^2z/δx^2 (δ为偏导数符号) 急求解答步