设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:28:41
设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)
x){n_F.rΧ{u옒Qmңy qƱqFF I [Cg@l"}_`gC+>[Yk

设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)
设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)

设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x)
根据第一个等式,f(x)为三次多项式.设为Ax^3+Bx^2+Cx+D.根据第一个极限,A=1,B=2.
根据第二个极限,C=1,D=0.所以f(x)=x^3+2x^2+x

设f(x)是多项式,且lim(x→∞)[f(x)-x^3]/x^2=2,且lim(x→0)f(x)/x=1,求f(x) 设f(x)是多项式,且limx->∞ (f(x)-2x^3)/x^2=2,且limx->0 f(x)/x=3,求f(x). 设f ' (0)=a,g ' (0)=b,且f(0)=g(0),计算lim((f(x)-g(-x))/x) lim下面是x→0 设f (x)在x=0处可导,且f (0)=0,求证:lim(x→∞)f (tx)-f (x)/x=(t-1)f' (0) 设f(x)是可导函数且f(0)=0,F(x)=∫t^(n-1)f(x^n-t^n)dt,求lim(x→+∞)F(x)/x^2n设f(x)是可导函数,且f(0)=0,F(x)=∫t^(n-1)f(x^n-t^n)dt,求lim(x→+∞)F(x)/x^2n答案是f'(0)/2n求详解 设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0 设函数f(x)在[0,+无穷)上有定义,A是一常数,且|f(x)-A|=1/sqrt(x),则()A lim(x→1)f(x)=1B lim(x→1)f(x)=AC lim(x→+无穷)f(x)=1D lim(x→+无穷)f(x)=A这种题应该怎么做 全部题目是 设函数f在[0,+∞]上具有连续的导函数,且lim(x→+∞)f'(x)存在有限,0 f(X)是关于X的一个三次多项式.已知lim[f(x)/(x-2)]=lim[f(x)/(x-4)]=1x→2 x→4 求lim[f(x)/(x-3)]=?x→4 f(x)为多项式且lim(x->∞)(f(x)-4x^3)/x^2=1,lim(x->0)f(x)/x=5,求F(X)的表达式 设f(x)是可导函数,且lim f'(x)=5,则lim[f(x+2)-f(x)]= 设f(x)有二阶连续导数 且f(0)=f'(0)=0 f''(0)>0 又设u=u(x)是曲线y=f(x)在点(x,f(x))处的切线在x轴的截距则lim(x→0) x/u(x)=?求截距这个很简单了,直接就是u(x)=[xf'(x)-f(x)]/f'(x)然后我得到lim(x→0) x/u(x)=lim(x→ 设f(x)是整系数多项式且f(0),f(1)都是奇数,证明f(x)没有有理根 设函数t(x)在点X=6处连续,且f(6)= -5 则 lim f(x)=?lim是 x->6 几道基础高数题1、设lim(x→+无穷) (3x — 根号下(ax^2+bx+1))=2,求常数a,b.2、设P(x)是多项式,且lim(x→+无穷) (P(x)-2x^3)/x^2=1,lim(x→+无穷) P(x)/x=3,求P(x).3、已知lim(x→0) (1/(e^x-bx+a))*∫(0到x) (sinx/ 根号 设f(x)在[0,+∞)上有连续的一阶导数,且lim(x→∞)f'(x)=a,证lim(x→∞)f(x)=∞ 设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x->-1+)f(x)=lim(x->-1+)(1+x)=0lim(x->-1-)f( 设函数f(x)=lim (1+x)/(1+x^2n) [n→∞] 讨论f(x)的间断点.有解答如下:∵f(x)=lim(n->∞)[(1+x)/(1+x^2n)]∴当│x│1时,f(x)=0∴函数f(x)有可能是间断点的点只能是点x=±1∵lim(x->-1+)f(x)=lim(x->-1+)(1+x)=0lim(x->-1-)f(