有理数的概念法则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 09:19:37
有理数的概念法则
xVRF?B1klRMR?<*!n.066\Ybb\řIOBNkd]vRft=Y\[ȣ{#;[lmUW|`{ytaL5㟽y=F0!S1L1mYxH ϼ>%WLv[Q6ke`ZEOXV4wKT>0FpnPAp31!:x7j]Gm0>9Ş[:)PofŇ'{{E4h;q>$Y[0,rK ^zPrBPCXI Xn\`H L2JSRx"u.&Yy2nfu]a(ghhڌM(/5vo'E/~A+@`?q ҇=B^DujSXo)[w8˳P

有理数的概念法则
有理数的概念法则

有理数的概念法则
有理数是一个整数 a 和一个非零整数 b 的比,通常写作 a/b.
包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数.
这一定义在数的十进制和其他进位制(如二进制)下都适用.
如3,-98.11,5.72727272……,7/22都是有理数.
有理数还可以划分为正有理数、负有理数和0.
全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示.
有理数集是实数集的子集.相关的内容见数系的扩张.
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
①加法的交换律 a+b=b+a;
②加法的结合律 a+(b+c)=(a+b)+c;
③存在数0,使 0+a=a+0=a;
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交换律 ab=ba;
⑥乘法的结合律 a(bc)=(ab)c;
⑦分配律 a(b+c)=ab+ac;
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1.
此外,有理数是一个序域,即在其上存在一个次序关系≤.
有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a.由此不难推知,不存在最大的有理数.
值得一提的是有理数的名称.“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”.事实上,这似乎是一个翻译上的失误.有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”.中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”.但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同).所以这个词的意义也很显豁,就是整数的“比”.与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理

有理数的概念法则:整数和分数