求不同类型的五道数学题急!求数学题与步骤答案好的加分!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:29:02
求不同类型的五道数学题急!求数学题与步骤答案好的加分!
xV]rFٖ8en J. `반ǻvb$e ؇$'aqRButϴ889d_ΈŜšwWn-Mn@C7Z*nsn7hs 1Ըxsgv:MݚjW2_yux_\ʲBwvӏ\nZÒIaؗ@*b jivӁINY/ [z5nC,`JXF&qQdY R#2|4>:&pFYb Ai@!T@%ibdFusi0Tط[k'zQv|IOl8E3C)*V 7fI/2_N h<=#Q|de`O LOyOI5`H_ffX!*j'ѝ׫F#HTQoF4e\Q>A$Md\Qh_?ٛD?_H %S-#3FWG\Ij{n}B`j[?ELmc IT]rH7x,Ñ|&2|㰴I/%㼸rLmj5x'7<i`iYycZlyiw ( + YYUJi1\rX낸:ӋhZ,@9!\Żu I0]/_YL$zȯ-Yl5!-hEڰ_p>wi!xb ! θb: TU(h(Q6!J59I5[#XT׮s%2M8l I$8[0#Vw ![2mx/_$5JeOk+&X b!\뺰?up8yӢEgZ~'* S~oAǧ"VZVKItr!

求不同类型的五道数学题急!求数学题与步骤答案好的加分!
求不同类型的五道数学题
急!求数学题与步骤答案好的加分!

求不同类型的五道数学题急!求数学题与步骤答案好的加分!
难度:★★★★
  连续2001个自然数的和等于四个不同质数的乘积,求这四个质数和的最小值.
  【答案】
设2001个自然数的第一个数是a,那么2001个自然数的和等于(a+1000)×2001,它等于四个不同质数的乘积,2001=3×23×29,已经是3个质数的乘积,那么a+1000肯定是一个质数,最小为1009,则这四个质数和的最小值为3+23+29+1009=1064
难度:★★★★★
  请写出5个质数,且它们是公差为12的等差数列.
  【答案】
牢记100以内的质数,质数中除2之外都是奇数,公差为12的奇数等差数列末尾数字一定是1、3、5、7、9,那么末尾为5的质数只有5,则5个质数是5、17、29、41、53.
难度:★★★★★
(10+876+312)×(876+312+918)-(10+876+312+918)×(876+312)=
  【答案】
此题用换元的方法
  设:876+312=A,876+312+918=B
  原式=(10+A)×B-(10+B)×A
  =10B+AB-10A+AB
  =10(B-A)
  因为,B-A=(876+312+918)-( 876+312)=918
  所以,原式=9180
难度:★★★★
任意交换某个三位数的数字顺序,可以得到一个新的三位数,原三位数与新三位数之和能否等于999?
  【答案】
不能等于999.因为改变某个三位数的各个数位的顺序,得到一个新数,三位数的各个数之和与改变顺序后所得新数的各个数之和相等,这6个数字之和是一个偶数,而999之和为27,是奇数,所以不可能等于999.
一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?
  【答案】
  这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90+164=254后所得的余数,所以254和220除以这个自然数后所得的余 数相同,因此这个自然数是254-220=34的约数,这个自然数只能是17或者是34,如果这个数是34,那么它去除90、164、220后所得的余数 分别是22、28、16,不符合题目条件.如果这个数是17,那么他去除90、16、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17