k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:08:19
k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的
xWR"G~i*w[K rߠ* SfwEjEh.M6p+i`P2I\sNM.///m;{zcWa0үɗ% mlBΟV{?,/& xYyuau*3ؔ/} )yBe#i$;8=~1raGҝQ.n׀>]urseh 10YM'-C|t## N ->Fݔ2,,9XVIzP̌J,=qpi!CIfbh¬ fam8dYFr~FRF%(U3Anqi(WttmjW$<8ϿV-v[k4Q8JvV eS@a]qTY%=8gJ0Rkx{6w54=K*7dyb\X_A5ztTZjo 2gh/ Uxs+֊0]UxC ޭ-~WA

k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的
k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明
k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.
(1)若a,b互质,证明a2-b2与a2、b2都互质;
(2)当a,b互质时,求k的值.
(3)若a,b的最大公约数为5,求k的值.
(1)设s为a2-b2与a2的最大公约数,
则a2-b2=su,a2=sv,u,v是正整数,
∴a2-(a2-b2)=b2=s(v-u),可见s是b2的约数,
∵a,b互质,
∴a2,b2互质,可见s=1.
即a2-b2与a2互质,同理可证a2-b2与b2互质;
(2)由题知:ma2=(m+116)b2,
m(a2-b2)=116b2,
∴(a2-b2)|116b2,
∵(a2-b2,b2)=(a2,b2)=1,
∵(a2-b2)|116,
所以a2-b2是116的约数,116=2×2×29,
a2-b2=(a-b)(a+b),
而a-b和a+b同奇偶性,且a,b互质,
∴a2-b2要么是4的倍数,要么是一个大于3的奇数,
∴(a-b)(a+b)=29 或(a-b)(a+b)=116,
∴a-b=1,a+b=29或a-b=1,a+b=116或a-b=2,a+b=58或a-b=4,a+b=29,
解得只有一组解符合条件,
a=15,b=14,
∴m(152-142)=116×142,
∴m=4×142=784,
∴k=784×152=176400;
(3)设a=5x,b=5y,(x,y)=1,
则m(a2-b2)=116b2,
∴即m(25x2-25y2)=116(25y)2,
∴m(x2-y2)=116(y)2,
∵x,y互质,则有:m=24×72,
∴x=15,y=14,
a=75,b=70,m=784,
k=784×752=4410000.
14、15行不懂
27行不懂

k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的
m(a2-b2)=116b2
显然a2-b2不整除b2 a2-b2只能整除116及他的约数 116有约数6个1 2 4 29 58 116
a2-b2=(a-b)(a+b)
据a-b a+b同奇同偶,58只能拆成1奇1偶,不符合,1 2 4易判断也不存在正解,剩下29 116
29=1*29 故a+b=29 a-b=1 a=15 b=14
116=(a-b)(a+b) 116只能拆成2个偶数和1奇1偶,2个偶数只能把2个2分到不同约数
116=2*58 a+b=58 a-b=2 a=30 b=28 这组ab不互质
所以a=15 b=14
∵x,y互质,则有:m=24×72,
把则有:m=24×72,删掉 可能不知道谁弄错了

1

(1)设s为a2-b2与a2的最大公约数,
则a2-b2=su,a2=sv,u,v是正整数,
∴a2-(a2-b2)=b2=s(v-u),可见s是b2的约数,
∵a,b互质,
∴a2,b2互质,可见s=1.
即a2-b2与a2互质,同理可证a2-b2与b2互质;
(2)由题知:ma2=(m+116)b2,
m(a2-b2)=116b2,

全部展开

(1)设s为a2-b2与a2的最大公约数,
则a2-b2=su,a2=sv,u,v是正整数,
∴a2-(a2-b2)=b2=s(v-u),可见s是b2的约数,
∵a,b互质,
∴a2,b2互质,可见s=1.
即a2-b2与a2互质,同理可证a2-b2与b2互质;
(2)由题知:ma2=(m+116)b2,
m(a2-b2)=116b2,
∴(a2-b2)|116b2,
∵(a2-b2,b2)=(a2,b2)=1,
∵(a2-b2)|116,
所以a2-b2是116的约数,116=2×2×29,
a2-b2=(a-b)(a+b),
而a-b和a+b同奇偶性,且a,b互质,
∴a2-b2要么是4的倍数,要么是一个大于3的奇数,
∴(a-b)(a+b)=29 或(a-b)(a+b)=116,
∴a-b=1,a+b=29或a-b=1,a+b=116或a-b=2,a+b=58或a-b=4,a+b=29,
解得只有一组解符合条件,
a=15,b=14,
∴m(152-142)=116×142,
∴m=4×142=784,
∴k=784×152=176400;
(3)设a=5x,b=5y,即x,y的最大公约数为1,
则m(a2-b2)=116b2,
∴即m(25x2-25y2)=116(25y)2,
∴m(x2-y2)=116(y)2,
∵x,y互质,则有:m=24×72,
∴x=15,y=14,
a=75,b=70,m=784,
k=784×752=4410000.

收起

k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116. (1)若a,b互质,证明k、a、b为正整数,k被a2、b2整除所得的商分别为m,m+116.(1)若a,b互质,证明a2-b2与a2、b2都互质;(2)当a,b互质时,求k的 1、设a1,a2,a3,a4……ak为k 个互不相同的正整数,且a1+a2+a3+……+ak=2005,则k的最大值是?2、二次多项式x^2+2kx-3k^2能被x-1整除,那么k的值是?3、已知a+2b+3c=6,则a^2+2b^2+3c^2的取值范围是?4、已知正整数m、n k,a,b为正整数.k被a*a,b*b整除得商分别为吗,m,m+116.若a,b互质,证a*a-b*b与a*a,b*b都互质 设k,a,b为正整数,k被a平方,b平方整除得的商分别为m,m+116,若a,b互质,证a平方减b平方与a平方,b平方互质 k,a,b为正整数,且a,b互质,19a+93b=4kab,求证:a整除93,且b整除19 设a>0,b>0且a+b=2.若不等式a2+b2≥k.恒成立,则k的最大值为? 设k、a、b为正整数,k被a、b整除所得的商分别为m,m+116,(1)若a、b互质,证明a-b与a、b互质(2)当a、b互质时,求k的值(3)若a、b的最大公约数为5,求k的值. 基础的数论题(高二)设a,b都是正整数,a2+ab+1被b2+ab+1整除,证明:a=b k,a,b为正整数,k被a²、b²整除所得的商分别为m,m+116(1)若a,b互质,证明a²-b²与a²,b²都互质;(2)当a,b互质时,求k的值;(3)若a,bd的最大公约数为5,求k的值. 计算:-(a-b)^2k+1 * (b-a)^2k * (a-b)^2k-1 (k为正整数) 1.若n为正整数,(n+11)²-n²的值总可以被k整除,则k等于( ) 2.分解因式:81(a+b)²-4(a-b)² 已知实数a满足a2+ab+b2=3,a2-ab+b2=k,求k的取值范围. 21届江苏初中数学竞赛题,急求解已知k,a,b为正整数,k被a的平方,b的平方整除所得的商分别为m,m+116.(1)若a,b互质,求证:a平方—b平方与a平方,b平方都互质;(2)当a,b互质时,求k的值;(3)若a, 若n为正整数,(n+11)²-n²的值总可以被k整除,则k等于 A 11 B 22 C 11或22 D11的奇数倍 若n为正整数,(n+11)²-n²的值总可以被k整除,则k等于A.11 B.22 C.11或22 D.11的倍数 若n为正整数,(n+11)² - n²的值总可以被k整除,则k等于() A 11 B 22 C 11或 22 D 11的倍数. :已知 a2 +ab+b2 =3 且a、b为实数设k= a2 -ab+b2 的最大值为m ,最小值为求 m+n的值是多少?n已知 a*a+a*b +b*b=3 且为实数 设k=a*a-a*b+b*b的最大值为m ,最小值为n ,求 m+n=? a、b都是正整数,且满足a2-b2=2007,求a、b的值a2为a的平方