已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:37:07
已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程
已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q
且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程
已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程
解:P(x1,y1), Q(x2,y2)
设椭圆方程: x^2/a^2+y^2/b^2=1
联立: y=x+1 x^2/a^2+y^2/b^2=1
(a^2+b^2)x^2+2xa^2+a^2-(ab)^2=0
x1+x2=-2a^2/(a^2+b^2)
x1x2=[a^2-(ab)^2]/(a^2+b^2)
向量OP=(x1,y1), 向量OQ=(x2,y2),
OP垂直OQ
x1x2+y1y2=0 y1y2=x1x2+(x1+x2)+1
∴2x1x2+(x1+x2)+1=0 .(1)
PQ=√{(1+1^2)[(x1+x2) ^2-4x1x2]}=(√10)/2
(x1+x2)^2-4x1x2-5/4=0.(2)
联立: (1)(2)
x1+x2=-3/2 x1x2=1/4
or x1+x2=-1/2 x1x2=-1/4
x1+x2=-2a^2/(a^2+b^2)=-3/2
x1x2=[a^2-(ab)^2]/(a^2+b^2)=1/4
a^2=2 b^2=2/3
或
x1+x2=-2a^2/(a^2+b^2)=-1/2
x1x2=[a^2-(ab)^2]/(a^2+b^2)=-1/4
a^2=2/3 b^2=2
∴ (x^2/2)+(3y^2/2)=1
或 (3x^2/2)+(y^2/2)=1