1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面ABC所成的角的正切值?2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:02:40
1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面ABC所成的角的正切值?2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且
xWOUW&55tyTfM&;;3c⧕tRE--,]J.gGp?A _'FFN4 m| ^w EI^/0IN+1 =~@fl"o,+,_)hD)qь])mO` $rb!ɭT\<DzE-8ExERd#E[8-.^<[4:ՄC-Mrh32t$靌׿珘13.2b#9"(2\8*\Ⲷ@)@P N=ѳŒW$nF[[d oX\c 9Ǵ%OͩZpm^]h`з}+dt{k9;zv-=ؚn/-@cЙ7ߺح-$kK,EFy]"j>h GV=]HƮ`rXP0=/\KUZ|ЕĹ'v\JJ9 ъBQ0oW-EȢl)`L#N-RB6ФzmM_G fZƈ]!E3[l)E#E=EuTӱWQ( є_Qΰ4Q%9={TEC:qӃ R9"Xǁ.L ?|z &`jle0WsUðk.=N% ?tGRGQiK.юd|LסcnB ,@7ճPĈlAl7֡A8JP JcXa1J^MG eS}Ͳ1qvv%DaauK<B 3)e&-"nPc 3Q&ȝS_xPLl y!_:I1b9.&dbIՏ9Bg-7@4'-\+J 5)~(r= & ?Dgx*-5eǐo\ G/1.fXF3rko]Uճ` 8s`8qRQʪ9 0!cw2L^9|>P+ ;ozM<O*TV@h7&0&+ƧiG_d"f8 [˒D81TAh&LL8!|b&[왂!T&k24:rM= R! LRISV@+>D3~B;&Xn7S&` :ً\ͩk}aaLx&=r-,xcc"aǙNJU7QSǢ BuԖJ†w\ [!~?%}:4 ,wh[FYvMU#ބ ?|"Ea*ɊVR(DXq%5j >

1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面ABC所成的角的正切值?2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且
1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面AB
C所成的角的正切值?

2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且PE/ED=BF/FA=1/2.求直线EF与平面ABCD所成角的正弦值.

那个,改动一个错别字,“球”改成“求”
还有第一题PD忘记连线了

1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面ABC所成的角的正切值?2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且
1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.求:PD与平面ABC所成的角的正切值
设PA=a
已知PA⊥面ABC,那么:
PB、PC、PD在平面ABC内的射影为AB、AC、AD
所以∠PBA、∠PCA、∠PDA分别是PB、PC、PD与平面ABC所成的角
即有:∠PBA=π/6,∠PCA=π/4
所以在Rt△PAB中,AB=PA/tan(π/6)=根号3*a
Rt△PAC中,AC=PA/tan(π/4)=a
又∠BAC=π/2,则由勾股定理有:
BC=根号(AB²+AC²)=2a
因为PD⊥BC,PD在平面ABC内的射影为AD
所以由三垂线定理有:AD⊥BC
所以:SRt△ABC=(1/2)*AB*AC=(1/2)*AD*BC
即有:AD=AB*AC/BC=根号3*a*a/(2a)=根号3*a/2
则在Rt△PAD中,tan∠PDA=PA/AD=a/(根号3*a/2)=2根号3*a/3
即PD与平面ABC所成的角的正切值为2根号3*a/3
.
2. ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且PE/ED=BF/FA=1/2.求直线EF与平面ABCD所成角的正弦值.
作EM⊥AD,垂足为M,连结FM
因为PA⊥平面ABCD,所以:PA⊥AD
所以在平面PAD内,EM//PA
所以:EM⊥平面ABCD
那么EF在平面ABCD内的射影为FM
即∠EFM就是EF与平面ABCD所成的角
由EM//PA得:PE/ED=PM/MD
又PE/ED=BF/FA=1/2,所以:
PM/MD=BF/FA=1/2
则在△ABD中,FM//BD
且FM/BD=PE/PD=1/3
即有:FM=BD/3
在矩形ABCD中,AD=a,AB=根号2*a
则由勾股定理有:BD=根号3*a
所以:FM=根号3*a/3
已知:PA=a,那么:EM=2PA/3=2a/3
所以在Rt△EFM中,EF=根号(FM²+EM²)=根号(a²/3 + 4a²/9)=根号7*a/3
sin∠EFM=EM/EF=(2a/3)÷(根号7*a/3)=2(根号7)/7
即:直线EF与平面ABCD所成角的正弦值为2(根号7)/7

连接PD
PA⊥面ABC,所以有PA⊥AB PA⊥AC
设PA=a
由勾股定理可得:
AB=√3a,PB=2a
AC=a,PC=√2a
又∵∠BAC=90°
所以有BC=2a
∴有BC=PB=2a
过B作BH⊥PC
对三角形PBC有
PC*BH=BC*PD
BH=√(PB^2-(0.5PC)^2)=...

全部展开

连接PD
PA⊥面ABC,所以有PA⊥AB PA⊥AC
设PA=a
由勾股定理可得:
AB=√3a,PB=2a
AC=a,PC=√2a
又∵∠BAC=90°
所以有BC=2a
∴有BC=PB=2a
过B作BH⊥PC
对三角形PBC有
PC*BH=BC*PD
BH=√(PB^2-(0.5PC)^2)= (√14a)/2
∴有PD=(√7a)/2
∴AD=(√3a)/2
∴PD与平面ABC所成的角的正切值为PA/AD=(2√3)/3
(2)连接BD
过点E作EM∥PA,过点F作FM∥BD
∵PE/ED=BF/FA=1/2 EM∥PA FM∥BD
∴AM/MD=1/2
∴EM=(2/3)PA FM=(2/3)BD
∵PA=AD=a, AB=√2 a
∴BD=√3 a
∴FM=((2√3 )a)/3 EM=(2/3)a
PA⊥平面ABCD
∴EM⊥平面ABCD
∴EF=√(EM^2+FM^2)=(4/3)a
∴sin∠EFM=EM/EF=1/2

收起

1、
因为:PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4
所以:角PBA、PCA分别等于π/6,π/4,设PA=a
在RT△PBA和RT△PCA中AB=根号3 a
AC=a
因为:∠BAC=π/2 所以BC=2a 在△ABC中 角ABC=π/6
因为:PA⊥面ABC 所以 PA⊥BC 又因为 PD⊥BC
所以BC⊥面...

全部展开

1、
因为:PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4
所以:角PBA、PCA分别等于π/6,π/4,设PA=a
在RT△PBA和RT△PCA中AB=根号3 a
AC=a
因为:∠BAC=π/2 所以BC=2a 在△ABC中 角ABC=π/6
因为:PA⊥面ABC 所以 PA⊥BC 又因为 PD⊥BC
所以BC⊥面PAD 所以BC⊥AD
在Rt△PAD中,AD=根号3/2 a PA=a
tan角PDA=PA/AD=三分之2倍根号3

收起

已知△ABC中,∠ABC=30°,PA⊥平面ABC,PC⊥BC,PB与平面ABC成45°角,AH⊥PC,垂足为H.求AH⊥面PBC. 已知P是三角形ABC所在平面外一点,PA垂直与PC,PB垂直与PC,PA垂直与PB求证,P在面ABC上的射影H是三角形ABC的垂心 1.已知PA⊥面ABC,PB、PC与平面ABC所成的角分别是π/6,π/4,且∠BAC=π/2,PD⊥BC.球PD与平面ABC所成的角的正切值?2.ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=根号2倍的a,E是线段PD上的点,F是线段AB上的点,且 8.已知三角形ABC 中,角ABC=30°,PA⊥面ABC,PC⊥BC,PB与面ABC成45°角,求二面角A-PB-C的大小. 如图所示,三棱锥P-ABC中,PA=PB=PC,若PA⊥PB,PA⊥PC,PB⊥PC,求PA与平面ABC所成角的 已知三角形ABC中,角ABC=30度,PA垂直于面ABC,PC垂直于BC,PB与平面成45度,求二面角A-PB-C的正弦值,希望能帮我解答出来,要有过程! 2道立体几何题,1.P是三角形ABC所在平面α外一点,PH⊥平面α于H,连PA、PA、PC,若PA=PB=PC,则H是△ABC的_____心;若PA、PB、PC两两垂直,则H是△ABC的_____心2.已知A、B两点到平面α的距离分别为4和1,AB与α 向量:已知P为三角形ABC所在平面内一点,且PA+PB+PC=0,PA乘PB=PB乘PC=PC乘PA= -1,则三角形ABC的面积为? 关于立体几何三棱锥的题目 已知PA⊥平面ABC,且∠BAC=90°,若PC,PB分别与平面ABC成30°,45°角,PA=a,求PA与BC的距离.) 已知P是三角形ABC所在面外一点,PA=PB=PC,角BAC=90°,求证:平面PBC垂直平面ABC 如图,已知菱形ABCD的边长为a,∠ABC=60°,PC⊥平面ABCD,且PC=a,E为PA的中点.求PB与平面PAC所成角的正1)求PB与平面PAC所成角的正弦值2)求二面角D-PA-B的平面角的余弦值 如图,已知△ABC中,∠ABC=30°,PA⊥平面ABC,PC⊥BC,PB与平面ABC成45°角,求二面角A-PB-C的正弦值和结果. 已知△ABC中,∠ABC=30度,PA平面ABC,PC⊥BC,PB与平面ABC成45度.求二面角A-PB-C的正弦值.过程详细. 如图,在鞋面为AB的Rt△ABC中,过A做PA⊥平面ABC,AM⊥PB于M,AN⊥PC与N,连接MN 求证PB⊥面AMN 立体几何的几个问题1.矩形ABCD中,已知AB=1/2AD,E是AD中点,沿BE将△ABE折起到△A'BE位置.使A'C=A'D,则A’C与平面BEDC所成交的正切值为( ) 2.若P为△ABC所在平面外一点,且PA⊥PB,PB⊥PC,PC⊥PA,则P在平面A 在三棱锥P-ABC中,侧面PAC与面ABC垂直,PA=PB=PC=3 (1)求证:AB垂直BC (2)设AB=BC=2倍根号3,求PB与平...在三棱锥P-ABC中,侧面PAC与面ABC垂直,PA=PB=PC=3(1)求证:AB垂直BC(2)设AB=BC=2倍根号3,求PB与平面ABC所成角的正 如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,M为AB的中点,点F在PA上,且2PF=FA.1、求证BE⊥面PAC2、求证CM∥面BEF3、求平面ABC与面BEF所成的二面角的平面角(锐角)的余弦值4、求 如图,已知P为△ABC外一点,PO⊥平面ABC,垂足为O若PA、PB、PC两两垂直,且PA=PB=PC,求P点到平面ABC的距离