求函数y=(x3-2)/[2(x-1)2]的极值!(x3表示x的三次方,(x-1)2表示(x-1)的平方)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:49:43
求函数y=(x3-2)/[2(x-1)2]的极值!(x3表示x的三次方,(x-1)2表示(x-1)的平方)
xN0_EOZ)</@`^MnHԃ.[Lih+CDK8RZwĤ;5f`UUfqs̏"9eF>ziuH\HTk<*w@'cʬ+A m -զDʗƷim/5GHij7bCUR/]L`ۈdl#Zr)o(h|wπ{xg_߉q(AvhQr]j 22FguO&KE}/,

求函数y=(x3-2)/[2(x-1)2]的极值!(x3表示x的三次方,(x-1)2表示(x-1)的平方)
求函数y=(x3-2)/[2(x-1)2]的极值!(x3表示x的三次方,(x-1)2表示(x-1)的平方)

求函数y=(x3-2)/[2(x-1)2]的极值!(x3表示x的三次方,(x-1)2表示(x-1)的平方)
y=(x^3-2)/[2(x-1)^2]
y'=1/2*[3x^2(x-1)^2-(x^3-2)*2(x-1)]/(x-1)^4
=1/2*[ 3x^2(x-1)-2(x^3-2)]/(x-1)^3
=1/2*(x^3-3x^2+4)/(x-1)^3
=1/2*(x^3+x^2-4x^2+4)/(x-1)^3
=1/2*(x+1)(x-2)^2/(x-1)^3
由y'=0,得:x=-1,2
x=-1时,y'从左至右变号,由正变负,因此y(-1)=-3/8为极大值
x=2时,y'从左右至右不变号,因此x=2不是极值点.