生活中有那些东西上有负数和正数必须是东西上的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:21:05
生活中有那些东西上有负数和正数必须是东西上的
xZIoז+z~p5Fxn4л%@E;A!,JEJIH%8$V {nl6 Uw:ιóYkYZwnj@6>È[|ݟcﭾmԊz7o߈≁kՋwqMH}zaL3gX R-ĝfc⣹/QF3Ycjz!47^z'ӥO{o|)/?oA!^?HLKؿL{Q4ka.ؖջ3p(OF腽9ac֘3BWV۴߱:q)crfW|8v{өUZsdiJ_ r"֐,b6ގP2a;9'KLXo ?xߐHo4P hڧ *;5C8jWAl 2_y(Xc2Ea>UK`7WW 2N i& #!+Sie MhY,ZꗦiO=˩|v1]#vrD$BVEŶH%jkzdԔv|'bO~)[Kإ8[*uڰzIQRCEqDea*Pfbڻdyqb,d/ m_Œ68X풽{ap؊B vaiƙ*'{[:/gg؀ꪻǹlve7yBH5|h 1j(*\sO)NbgxUw⨿< hw\pOb3OqA>@}"klⰧ ,X[b!P\-DܒƖfl4r* Sę.UH)a1qC-3$0GMYӡ0 1rs5sAI{|Ŷ[2w< lV oe&@n"vɒz&d/K)?Cs0 !]_{9ÈFgYu;HvFϨgx7Qoڽ}p.!T2gNd'ST|_@HGw\C8>='Թ9kzMCfٙe-[}ϙa, gX[t5SMD_y˶GbMp-gMqob/Sϳ ,)x6}ɽӼib/$|< dF4Oy Sg^uZ9g*yB8]e=S@9QB"_+KyiHݜfinPi_TzwSve5 < Ԃ-E > hxN5J ԶokVoG\A5& }a`-߆8!!Yi7W&>" "!f萡2%6Cnlnw'Nƺ)!Jt0v .ے1d)z8o@xZ2Q[-}C!0BGJ8{a P5tD9 ܔJX!Ъ\SO"j#rk`6,9Tt)|nase,oMs3ޣ}!l`[K{(<jOrLT4+bM@z-1^ǿHTˋAj^׾Om7SboB=ɊHDmtEXBhV NްTW`CV'z5%/|~oN>Cpsϥ @"lUd-YBuʫW Hn7DC)~-N`?] x\dCgd3 rgnh*6TP ڇ̖0_iha=3'|)UzGV*9anX}?8L vY$E %Q$Mg(OeZ{>HSxu Ua2s:tщ"MZ5vdpU7 @ E|S-<)=S1:Q @,%@\6JЪp @S .= 1a4QM깼>7벑sT9`0?{ _̓+wTsJҥn+;1Ž3bzVsON{l9d^Ho׽+#*"+w턍PC5(sp̖g0Gԅ[bج!&%gn* AT4Z:Y^=˕,x;e q(DCX/xLCKnU8hYj?$hSyH3^l3yS n$p p(we. PKpcubRGR\n~('bxZd2m)wP1J 2鰺D 析zo) ff5J LTocm_gL8'y#ژ("TjL”CN&hZ PxPD*2]}oeQ lQy] PHQ5a0LW@AÁo"S9 ^V/'?R {N`3_D\PӗiF6*¢]2nN nBԿE 9:CLmLb%b9~=K7/~%EN\fYEi*2i6;0ʓ2{< pȔMDf-}3Fb$v]1ɃTb\ B.]:@4١}@Pײ^7;>'V%Sd>GqC]oQxgU_dmrg 2/hS /&?S/KgO3-ް PN/ ?gq"{,3PE u%~.ָGyX V{0CmmvCrb$!gefxqTn06y sHy]^ ݰk"o2oQV<ն.whC}mE~U܃g0QSPTj] r":tWc,`I`\u9 "Jt!~"DHAr'[brZ_U7KM$$v>vY+yGR6hߑ_GAhŀ]>.vN]_5b\X2頮.` Կ) vc"C-Bɠ}@,>n42S>0:f#2@и FF rӓq[=1Ua(nvxܑCro_ӷ\UvA>,jdD2M;X +

生活中有那些东西上有负数和正数必须是东西上的
生活中有那些东西上有负数和正数
必须是东西上的

生活中有那些东西上有负数和正数必须是东西上的
负数
负数的简介
比零小(<0)的数.用负号(即减号)“-”标记.
如-2, -5.33, -45/77, -π.
参见:非负数(Nonnegative), 正数(Positive), 零(Zero),负号/减号(Minus Sign).
例1、我们在小学学过自然数1,2,3,...;一个物体也没有,就用0来表示,测量和计算有时不能得到整数的
结果,这就要用分数和小数表示.同学们还见过其他种类的数吗?
现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6
刻度,这时的温度如何表示呢?
提示:
如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数.
参考答案:
记作-6℃.
说明:
我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念.
例2、下面我们再看一个例子,从中国地形图上可以看到,有一座世界最高峰——珠穆朗玛峰,图上标着8844;
还有一个吐鲁番盆地,图上标着-155.你能说出它们的高度各是多少吗?
提示:
中国地形图上可以看到,上述两处都标有它们的高度的数,图上标的数表示的高度是相对海平面说的,
通常称为海拔高度.8844表示珠穆朗玛峰比海平面高8844米,-155表示吐鲁番盆地比海平面低155米.
参考答案:
珠穆朗玛峰的高度是海拔8844米;
吐鲁番盆地的高度是海拔-155米.
说明:
这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度,它们也表示
具有相反意义的量.
例3、甲地海拔高度是35米 乙地海拔高度是15米,丙地海拔高度是-20米,请问哪个地方最高,哪个地方
最低?最高的地方比最低的地方高多少?
提示:
35米,15米,-20米分别表示什么意义?
参考答案:
甲地最高,丙地最低,最高的地方比最低的地方高55米.
说明:
35米表示高出海平面35米,15米表示高出海平面15米,-20米表示低于海平面20米,所以甲地最高,
丙地最低,且甲地比丙地高55米.
例4、我们已经知道,具有相反意义的量可以用正,负数表示.例如:零上5℃和零下6℃可记为+5℃和
-6℃;高出海平面10米和低于海平面8米可记为+10米和-8米;收入200元和支出300元可记为
+200元和-300元;前进30米和后退40米可记为+30米和-40米,请问上升7米和向东运动9米可记为
+7米和-9米吗?
提示:
上升和向东运动是具有相反意义的量吗?
参考答案:
不可以记为+7米和-9米.
说明:
具有相反意义的量必须满足两个条件:(1)它们必须是同一属性的量;(2)它们的意义相反.上升
和下降;向东运动和向西运动才是相反意义的量,因为上升和向东运动不是具有相反意义的量,所以不可
以记为+7米和-9米.
-π是超越数,不是有理数
复数的由来
人们在生活中经常会遇到各种相反意义的量.比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食.为了方便,人们就考虑了相反意义的数来表示.于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负.可见正负数是生产实践中产生的.
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.
我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.
刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一.
用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱.
负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷.
在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.而在古代数学中,负数常常是在代数方程的求解过程中产生的.对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念.3世纪的希腊学者丢番图的著作中,也只给出了方程的正根.然而,在中国的传统数学中,已较早形成负数和相关的运算法则.
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数.直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题.
与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.16、17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年).他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立.
负数的应用
温度:零下3摄氏度---- -3℃
楼层:地下1层---- -1层
海拔:吐鲁番盆地最低点低于海平面
155米----海拔为-155米
负数
我国在《九章算术》《方程》章中就引入了负数(negative number)的概念和正负数加减法的运算法则.在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负.在关于粮谷计算中,则以加进去的为正,减掉的为负.“正”、“负”这一对术语从这时起一直沿用到现在.
在《方程》章中,引入的正负数加法法则称为“正负术”.正负数的乘除法则出现得比较晚,在1299 年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确.在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)×(±b)=+ab,(±a)×( b)=-ab,这样的正负数乘法法则,是我国最早的记载.宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一.
印度人最早提出负数的是628年左右的婆罗摩笈多(约598-665).他提出了负数的运算法则,并用小点或小圈记在数字上表示负数.在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250).他在解决一个盈利问题时说∶我将证明这个问题不可能有解,除非承认这个人可以负债.15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”.韦达知道负数的存在,但他完全不要负数.笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无”更小.
哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数.邦别利(1526-1572)给出了负数的明确定义.史提文在方程里用了正、负系数,并接受了负根.基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数.总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的.

电流表和电压表

体温表