等差数列与等比数列的性质有哪些?越详细越好..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:55:41
等差数列与等比数列的性质有哪些?越详细越好..
xWNI~f60=2YY9EW+6ؘmll"8;3_wg&Q6J?U_UWUՙJ=q.Y_]ܶZnl)/ٙԮ[ˬ,y?O=N h"dqjėP!k *[Dg9?Bo2Q6&0EZf [-1CwtA?/1e􁜳y/Fq='֓,.\ >ot%[zg r:#YJ,%%VvjGR>>h- XWOB'pMWS4] 1ND~Sʰ̌uw8 bi4&Z*f<Kb8OE4-L'a' 6Q9iTdH1>jBZ600t0?/۽\%ӼbW ?4>5U2ES&@)Ic0I1Ң}NКSmMͰ d>o_wDQ[iuαHrj Pwזey{iFyܙwƻ W3脤bzYSi[QPz>hUYPP?(=R("=j1%5QB}ҧR k/`C=`k`@dЈz8/x-g o B'4P1e BW9Xzƈ2! ֓lz SD`Ca:Oa)K|$ g~3DF%SOC%7=s!}z)oP̫hPP猠B-(ḶrFT}F?b^-eaϾx Rs P|Ej^sk=^*Z"}OaҧE|.d(^xq1T`!rpy /qM, Уow*Nsw=Aarq䆒#)^E¯Wd1=h

等差数列与等比数列的性质有哪些?越详细越好..
等差数列与等比数列的性质有哪些?
越详细越好..

等差数列与等比数列的性质有哪些?越详细越好..
一、 等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示.
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式.
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级.
若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q).
若为等差数列,且有an=m,am=n.则a(m+n)=0.
等比数列:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q表示.
(1)等比数列的通项公式是:An=A1*q^(n-1)
(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2ar ar则为ap,aq等比中项.
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.
性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方.
等比数列在生活中也是常常运用的.
如:银行有一种支付利息的方式---复利.
即把前一期的利息赫本金价在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利.
按照复利计算本利和的公式:本利和=本金*(1+利率)存期
好多参考书都有的,自己做题做得多,也会知道,所以要多做题,多总结.多思考,自己能解决 的尽量不提问题!因为学习好多时候靠自己!