函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:20:47
函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少?
x){ھ qFřy gsnvӉ+͙l :O;fBtiThUkWho7jyɎUO{aEpQt' jV$*M z r%nhoTOko᳃~/ifla Ɏ]Km z1A9@ @^~@uF: "VV::zck]Fn"+/.H̳©,

函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少?
函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增
函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少?

函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少?
函数y=cos^2wx-sin^2wx=COS2WX;周期为π;可知w=1.
f(x)=2sin(wx+π/4)=2sin(x+π/4);sinx单增区间为[-π/2,π/2],故知,
f(x)单增区间为[-π/4,3π/4],加上2kπ即为单增区间

已知函数y=cos²wx-sin²wx的最小周期是π/2,那么正数= 函数y=cos^2wx-sin^2wx的最小正周期是π,则函数f(x)=2sin(wx+π/4)的一个单调递增函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少? 函数y=cos^2wx-sin^2wx(w大于0)的最小正周期是兀,则函数y=2sin(wx+兀/4)的单调增区间是多少? w=1是函数y=cos^2(wx)-sin^2(wx) 的最小正周期为派的什么条件? sin^2(wx)-cos^2(wx)的周期T=4π,那么常数等于? 如图是函数 Y=2sin(wx+p) p 如图所示是函数y=2sin(wx+φ)(|φ| 将函数y=sin(wx+φ)(π/2 已知函数f x=√3sin(wx+φ/2)*cos(wx+φ/2)+sin^2(wx+φ/2)(w>0,0 设函数y=sin(wx-π/3).cos(wx-π/3)的周期为2且w>0则w= 已知函数fx=2sin(wx+ 设函数f(x)=sin(wx+q)+cos(wx+q)(w>0,q的绝对值 函数f(x)=√3sin^(wx/2)+sin(wx/2)cos(wx/2) (w>0)的周期为π,求w的值和函数f(x)的单调递增区间 已知函数f(x)=sin(wx+pai/6)+sin(wx-pai/6)-2cos^2(wx/2),x属于R,(其中w>0),求函数f(x)的值域 已知函数f(x)=sin(wx+π/6)+sin(wx-π/6)-2cos²wx/2,x∈R(其中w>0,)(1)求函数f(x)的值域 函数y=sin(π/4+wx)sin(π/4-wx)的最小正周期是 已知函数f(x)=sin (wx+兀/3)-cOs (wx+兀/6)-2sin ^2 wx/2+1已知函数f(x)=sin (wx+兀/3)-cOs (wx+兀/6)-2sin ^2 wx/2+1,w>0,x∈R.①若函数f(x)的周期为兀,求w.②在①的条件下,求函数f(x)在区间[-兀/4,兀/4]上的最大值和最 已知函数,f(x)=sin(wx+派/6)+sin(wx-派/6)-2cos^2(wx/2),其中w>0,求函数f(x)的值域.已知函数,f(x)=sin(wx+派/6)+sin(wx-派/6)-2cos^2(wx/2),其中w>0,求函数f(x)的值域.